
Final Report

Retargeting of Existing FORTRAN Program \

and
Development of Parallel Compilers

NASA Contract # NAG 2-449
Dated : Sept. 26,1988

S I J \ , I I ~ I ~ I + Y ~ 1 Dr. Ken Stevens
\ l : i I r .top 233-14

N,\s,! 11t~t-s Hesearch Center
Mofftat t Field, CA 94035

(&lASdk-CR-1828G6) RETAGGETfYC CP E X I S T I N G N 89- 16 3€5
PGPTPAK EBOGEAH A I D DEVELGEEEL1 CF EARALLEL
CCIPXILBBZ F i n a l E e I ; o E t (North Carol ina
s t a t e U n i o .) 5 7 C S C L 09s Unclad

63/61 0185463

PI : Dr. Dharma P. Agrawal, Professor
Computer Systems Lab.

Department of Electrical And Computer Engineering
Box 7911

North Carolina State University
Raleigh, NC 27695-791 1

Tel: 919-737-3894

Research Assistant : Sukil Kim

Retarget ing of Existing FORTRAN Program
a n d

Development of Parallel Compilers

SUMMARY

This report describes the software models used in implementing paralleliz-
ing compiler for the B-HIVE multiprocessor system. The various models and
strategies used in our compiler development are:

1) Flexible granular i ty model, which allows a compromise between two
extreme granularity models;

2) Communicat ion Model, which is capable of precisely describing the
interprocessor communication timings and patterns;

3) Loop Type detection s t ra tegy, which identifies different types of loops,
such as DOALL, DOACR, and DOSEQ;

4) Critical Path with Coloring scheme, which is a veraatik qcheduling
strategy for any multicomputer with some associated curnrriunication
costs;
Loop Allocation Strategy, which realizes optimuril (Ii-e~.lapprd opera-
tions bet ween computation and communication of the sjsterr

Using these models, several sample routines of AIR3D package are exam-
ined and tested. It may be noted that automatically generated codes are highly
parallelized to provide maximize degree of parallelism, obtaining the speedup
up to 28 on a 32-processor system. A comparison of parallel codes for both
existing and proposed communication model, is performed and the correspond-
ing expected speedup factors are obtained. The experimentation shows that
the B-HIVE compiler produces more efficient codes than existing techniques.

Working is progressing very well in completing the final phase of the com-
piler. Numerous enhancements are needed to improve the capabilities of the
paralleliaing compiler.

5)

CONTENTS

Introduction ..
B-HIVE Parallelizing Compiler and Software Models

1 . Program Division ...
2 . Flexible Granularity Model ..
3 . Communication Model ...
4 . Loop Detection and Allocation ...

Case Study : AIRSD ..
1 . Sample Basic Block : FLUXVE ...
2 . Sample DOALL Loop : XXM ..
3 . Sample DOAFtC Loop : GRID ..

Performance Evaluation ...
Conclusion ...

1 . Software Packages Developed ...
2 . Future Plan ...
3 . Suggestion and Comment ...

References ...
Appendices ...

1
3
5
6

11
12
25
27
28
31
35
41
41
42
42
43
46

..
11

CHAPTER 1

INTRODUCTION

Parallel computation is crucial in shortening the turnaround times for
massive scientific computations, such as computer aided design applications,
computational fluid dynamics, and weather forecastings. Numerous efforts
have been made to increase the speedup for such algorithms on various parallel
processors, such as vector processors [Sw 5851, shared memory multiprocessors
[EBS84], and private memory multiprocessors [Cat87]. The major effort in util-
izing multiprocessor systems for computational fluid dynamics lies in the way
of increasing the degree of parallel operations and cutting down the turnaround
time that is extremely long on a uniprocessor machine. Navier-Stokes algo-
rithm that reqrrites. maSSiVc computations, is a fundamental simulation model
for computational Hrrid dynamics needed in designing a high speed aircraft.

Architectural irrnoi a f ion in multiprocessors h a s also encouraged the
developmt.ri t of I I V h foul.; .n exploring the capabilities of the parallel machines
[Fly72]. Trad q ~ , c l d v r (d 4 programs are not directlj suitable for the new
architectures, an clb M.%-CV they must be reorganizrd crc inodified to utilize the
power of the ne% I .achrlles For this purpose, either we can develop a parallel-
izing compiler that transforms a sequential source program into parallel code
automatically, as described in (A1183, AlK85, FER84, KKP81, PKL80, LAM87,
LKA88], or we could provide programmers some sort of parallel programming
environment such as seen in new programming languages [Hoa78, Ahu861, and
in the extended languages [Han77, KuS85, Sha86] so that the parallelism could
be specified manually.

The disadvantages of having new parallel language is the need for a new
compiler and. the mandatory need for rewriting the whole program all over
again for a new machine.

We have concentrated our efforts in retargeting existing software. The
advantages of having parallelizing compiler are its “user friendliness” and high
reusability. The user friendliness means that a user can get the parallel codes
without learning the new parallel language. Reusability implies that the exist-
ing programs can be run on a new parallel architecture simply by recompiling
the existing source code. The drawbacks of having a parallelizing compiler are
the higher compiling cost (due to the incorporation of automatic parallelism
detection algorithm), and a somewhat lower degree of parallelism (because of
inherently sequential algorithms or programmer’s coding styles).

2

Most past efforts on parallelizing compilers have been concentrated on the
loop structures. For example, parallelism in loops is extensively analyzed in
[PoB87, PKP86], the granularity considered in [Cve87], and dynamic schedul-
ing covered in [PoK87]. These efforts are mainly concentrated on the paralleliz-
ing the codes for a shared memory multiprocessor system in which an interpro-
cessor communication overhead is negligible. In a loosely coupled distributed
memory multiprocessor system, however, communication overhead is large so
that run time task distribution itself would require excessive amount of time.
This limitation basically encouraged the use of the static scheduling in which
the task allocation is done before run time.

Navier-Stokes program has been restructured and tested under the static
scheduling strategy on a two-VAX 11/780 based shared memory multiproces-
sor, and the speed-up of 1.9 [EBS84] has been reported. This result is not too
encouraging and has forced to look into possible utilization of distributed
memory multiprocessors for computational fluid dynamics and other scientific
computations. This report covers various strategies that have been employed
in building a parallelizing compiler for a distributed ruernory multiprocessor
environment and describes the computation models used fo-r the AIR3D pack-
age, a version of Navier-Stokes algorithm provided by the NASA. Only the
static scheduling st I ategy i3 considered as the parallelizing compiler has been
developed tor the oosc.1~ coupled B-HIVE multiprocessor system [MG86].
The R H I W 11111 I t ipi (mssor system is a 24-node generalized hypercube based
machine designed and built at the North Carolina State University. Each node
in the RHIVE system consists of a pair of processors, an application processor
and a communication processor, which communicate with each other through a
fast dual-port shared memory.

In Chapter 11, we describe the structure of the B-HIVE parallelizing FOR-
TRAN compiler. This chapter also describes the parallel software model and
communication model employed in the parallelizing compiler, and is accom-
panied with few examples. In Chapter 111, we consider several AIR3D routines
extensively to show how the proposed software models and strategies are used
in the E m compiler. We also show the parallel codes for several sample
routines. Performance simulation and test results on some AIR3D subroutines
with proposed model is given in Chapter IV. Finally, the current status of the
project is summarized, and the future plans are also included.

.
CHAPTER 2

EHTVE PARALLELIZING COMPILER AND SOFTWARE MODELS

B-HIVE parallelizing compiler accepts a sequential code and produce a
parallel code. It, automatically and interactively, detects parallelism of the
source codes, determines the type of loops, allocates parallel tasks, and finally
generate parallel codes. This chapter describes the parallelism detection and
utilization strategies used by the B-HIVE parallelizing compiler.

Figure 1 outlines seven phases in the compilation. The front end of the
compiler includes lexical and syntactic analysis of the source codes written in
FORTRAN. The second phase of the compiler reads syntactically verified
source codes and builds a program tree in which nodes and arcs represent tasks
and program control flows respectively. Source mdtr-are divided into a set of
tasks according to the program’s natural boundaries. such as loop bodies, com-
parison bodies, subroutirir.s, and basic blocks ,I t w i c block includes a
sequence of consecutive s*aleriients without inter ior branching or stopping.
Within each basic block, t h e t xecution order of I t i f ’ stntements is then carefully
analyzed based 0 1 1 the d a t a dtbpendence relatioiiq bet ween every pair of state
ments. Defining H e a k ’ dependence relation between sets of statements by a
precedence relation, such that allocation of every set of statements onto two
different processors does not delay the completiori time of a basic block, group-
ing statements into a set of tasks will improve or a t least not worsen the perfor-
mance if every pair of tasks are weakly dependent on each other. In other
words, by grouping “strongly” dependent statements into a task, such that a
precedence relation between a pair of the statements delays execution if the two
statements of every pair are allocated onto different processors. This property
of grouping statements inside basic blocks provides another source of potential
parallelism of programs besides the parallel loops.

The potential parallelism of basic blocks is explored in the third phase of
the compiling process, forming a hierarchy of tasks based on the data depen-
dence relation between every pair of tasks. In a distributed memory multiprw
cessor environment, a communication overhead is inevitable so that grouping
strongly dependent statements into a task is crucial to eliminate excessive com-
munication overhead. A task is represented by a “grain” which is basically a
group of operations. Partitioning a basic block into several grains is character-
ized as a granularity model. In a fine granularity model, each grain consists of
only few operations. For instance, in an extreme case, such as a data flow com-
putation, each grain contains one operation and all grains are concurrently

3

4

issued for better utilization of the resources. The drawback of this model is
that it tends to initiate a lot of communication and synchronization traffic
among the processors. Hence, this model is not appropriate for a distributed
memory multiprocessor environment. Another extreme example is a coarse
granularity model. Every grain has big chunk of computations, such as pro-
cedure level seen in a distributed computing environment wherein the commun-
ication overhead could be reduced to the minimum level at the expense of the
degree of parallelism [Bab84]. Flexible granularity model is a compromise,
resulting in the medium size grains. It begins exploring all potential parallelism
of the statements within each basic block, producing a set of fine grains, and
then regroups cohesive fine grains into medium grains, thereby decreasing the
communication overhead while retaining the parallelism among the grains.

In the fourth phase, every basic block is replaced with a block data depen-
dence graph, and a global data dependence graph of the program tree is built
to ensure proper code synchronization throughout the entire program. The
information obtained in this phase is turned into communication primitives in
the code synthesis phase The next phase allocates all the tasks onto a limited
number of prcwssors Optirnal allocation of m tasks to n processors is a well-
known NP-corriplete prlhlt rri [Sto77]. Thus, it is desirable to devise a heuristic
algorithm which givw rjt-ar optimal answer within a reasonable amount of
time [Efe82]. T h e t I I o (ntrorl phase takes into account the computation times of
the tasks and the C ~ I I . I I I ~ I O I (at ion costs among them. Communication is con-
sidered according to t ht. overlapped computation/communication model
described below and in [LAM87]. Finally, the synthesis phase reorganizes the
sequential codes and allocate them onto a number of processors inserting the
communication primitives and ultimately producing a separate (cooperating)
program for each processor.

5

Sequential Code
&

I Syntax Verifier I

I Program kartit ioner 1

I Basic Block Partitioner I

I Infinite Processor Scheduler I

Finite Processor Allocator I
Code ~ Synthesizer

I Object Code Generator I

Figure 1. The Structure of the B-HTVE Parallelizing Compiler.

1. Program Division
The program divider builds a program hierarchy tree for a given program

into “non-leaf nodes” (that usually has child node) and “leaf node” (that has
no child nodes). Control statements, such as loop header, comparison state-
ments are sources of non-leaf nodes, and basic blocks become leaf nodes. For
example, every DO-loop is considered as a non-leaf node, and then, every
nested loop is represented as a parent-child relation. The algorithm is
described in Figure 2. All program hierarchies shown in this report are built by
using this algorithm.

6

input : Sequential Program
output : Program Hierarchy Tree

1.
2.

Create root node of the hierarchy tree with the name of the program.
while no t done
2.1.
2.2. repeat

Create a new child node for the current node

Put statement into the child node of 2.1
unti l boundary statement is encountered.
Case A: { a starting point of a structure 1 2.3

Create a new child node for the current node.
Current node := new child node of the current node.

Current node := parent node of the current node.
2.4. Case B: { an ending point of a structure }

Figure 2. Program Division Algorithm

For a given program with n statements, the time complexity of the pro-
gram division algorithm is O (n) , since every statement in the given program is
visited exactly once in the algorithm while the time needed to process a state-
ment is constant

2. ’ Flexible Granular i ty Model
Basic block partitioning begins with building a “block data dependence

graph”, in which all potential parallelisms of a basic block is exposed. The
problem with a fine grain graph is that it contains too many nodes, and too
many communication arcs between nodes. To reduce the communication over-
head, cohesive fine grains are grouped into medium grains, decreasing the
number of arcs while retaining the parallelism among the grains. Cohesive fine
grains are a set of connected nodes in a block dependence graph. In other
words, there must be either a direct or an indirect precedence relation between
every two nodes.

Three precedence relations are considered in partitioning. The “output
dependence” relation occurs when two statements update the same variable.
This dependence relation can be easily solved by allocating the statements onto

7

different processors, where the interference is removed by the use of private
memory, or by maintaining the original order of execution if they are allocated
onto the same processor. Thus, output dependence is not an obstacle to paral-
lelism. The “anti-dependence’’ represents the relation that a statement uses a
value that the following statement modifies. This relation can be resolved by
allocating each task onto different processors in which every processor reads the
value into its own private memory before execution. This enables several pro-
cessors to use and to modify concurrently without any conflicts. The “flow
dependence” occurs when a statement produces a value that is used by a suc-
cessive statement. Whenever a pair of statements that have flow dependence
relation are allocated onto different processors, the interprocessor communica-
tion is unavoidable, which implies excessive communication overhead. To
prevent this, we need a more systematic mechanism to reduce the interproces-
sor communication by grouping the statements along the flow dependence arc.

A memory aliasing in a distributed memory multiprocessor requires more
careful consideration for grain grouping. Assuming array elements A [i] and
A [j] , such that i = j at run time, it is unknciwxr. whether r = j a t compile time.
For example, given

S1 i =
S2 A[il - -
S3 read (j)
S4 A(j] = - -
s5 - * = A[i]

S5 depends on either S2 or S4 since j is unknown a t compile time.
Let Tp : Si - S, be a task set that has statements Si and S,, such that Si

must be preceded by Si. Then partitioning into two tasks, such as TI :
Sl-S2-S5 and T2 : S3-S4 causes confliction if T, and T2 reside in the
different processors, since S5 must refer to the processor that has A [j] if j = i .
Similar situation is observed among the tasks that retain anti dependence rela-
tion. To solve this problem, a pair of array elements, that retain any pre-
cedence relations should be grouped together. We denote dependence relation
among array elements as “array dependence relation” through the paper.

Flexible granularity model performs grain grouping, so as to eliminate
excessive communication traffic while retaining all, or at least most, parallelism
detected during the data dependence analysis. “Vertical partitioning” provides
a way of grouping grains, in which every pair of fine grains has either direct or
indirect precedence relations are fused together forming a medium grain. By
labeling the dependence arc between every pair of grains with the correspond-
ing communication cost, we can determine every path cost along the arcs.

8

Assuming as if we allocate the longest path onto a processor, the next longest
path to anther processor, and so on, we obtain a number of parallel medium
grains that have fine grains on every corresponding path. However, the task
sets obtained solely by vertical partitioning do not promise optimum perfor-
mance, as the intertask synchronization between pairs of tasks some times defer
completion time compared to the case that the task pairs are allocated onto the
same processor. To avoid this circumstance, we propose a versatile grain
grouping algorithm based on “list scheduling” technique.

List schedulings [coG72, KaN841 are a class of implementable static
scheduling methods in which tasks are assigned priorities and placed in a list
ordered in descending magnitude of priority. Whenever executable tasks con-
tend for processors, the selection of tasks to be immediately processed is done
on the basis of priority with the higher priority tasks executable being assigned
processors first. This characteristic of list schedulings tends to evenly distribute
tasks over all processors based on the load balancing criterion.

Our flexible granularity model solves both grain grouping and load balanc-
ing problems. It begins with finding the longe.;t.patlr task in the vertical parti-
tioning technique. We delete communication overhead within the longest path
task, of which the cost implies actual comptitation tirile of the task. Then
confirm whether other path tasks increase the longest path task cost due to
intertask communication between the longc-st 11 $ 1 t i L a 4 and other one. If there
is a task that defers the completion timt of‘ t t i t Iorlgest path task, this task is
merged to the longest path task until no I I ~ O I ~ task atfects the completion time
of the longest path task. During the task merging process, grains are reordered
according to the dependence relation between a pair of grains. We name the
proposed algorithm “Critical Path with Coloring” (CP/C) algorithm and sum-
marize it in Figure 3.

The advantages of CP/C algorithm are:
it can partition a basic block into a set of weakly dependent parallel tasks
with O(n3);
it represents a task with two timing values, the earliest finishing time, T!
and the latest starting time T, of the task, and with a color number that
represents the task group number;
it can simulate the near optimum completion time of a basic block on an
infinite number of processors, where the completion time is determined by
solely the longest path task cost;

4) in the worst case, a basic block is assumed a task so that it does not allow
excessive partitioning.

Consider the example that has several flow dependence relations among state-
ments with arbitrary execution costs, as shown in Figure 4. Flow dependence

1)

2)

3)

9

relations are identified, such as S , S, -S3 , S,-S, and S,-S5. Let depen-
dence relation be replaced wit,h same communication cost, 7,. If communica-
tion cost is enough small to simulate a shared memory multiprocessor architec-
ture, for instance, ~ , d 4 0 0 , task partitioning, such as T l : Sl-S2-S3 and '
T, : S4-S5 is the optimum way to shorten the completion time. If communi-
cation cost simulates a distributed memory architecture, for instance, T, = 1000,
task partitioning, such as Tl : S1 - S,- S3- S 5 and T 2 : S4 is the optimum par-
titioning. If T , >1000, all statements of the example becomes a single task since
any partitionings worsen the result.

input : Basic Block
output : Parallel Task Set

1. Build Array Dependence Graph, G
2. Append Flow Dependence Arcs of non-array Symbols to C
3. Label Dependence Arcs with Corresponding Communication Cost
4. while not empty (G) do
4.1.

4.2. Firltl t h t I o i l ~ t - t 1)at.h ,D,,,,,

4.3.
4.4.
4.5. while not firiished do

Recalculate Cos t [p)
if task T, exists, such that Ti mostly affects Cost(p] then

else set finished

for everq path of C:, Cp do
Covt[p] XG'rattt Computation cost +CCommunicat ion cost

b~ltr~ii~tiit~ (o n i i i ~ i ~ t ivatiori coqt from G,,,,
Put color number to every grain of Cpmax

merge Ti to Gpmax

4.6.
4.7.
4.8.

Put every grain on Gpm, into a Task set, Tp
Compute earliest finishing time and latest starting time of Tp
Delete Cp m ax from G

Figure 3. Critical Path with Coloring Algorithm.

10

(a) Basic Block

Task
No

1

2

Latest
Starting Time

0

600

Earl iest
Finishing Time

1700

1400

(b) Task Graph (T ~ = 100)

Task Latest Earl iest
No Starting Time Finishing Time

1800 1 0

2 0 700

(c) Task Graph (7, = 1000)

Figure 4. Sample Basic block Partitioning based on CP/C Algorithm.

Returning to the allocation problems, we have to allocate a number of task
set onto a limited number of processors. Whenever we have enough processors
to allocated every task set, we can allocate every task onto different processors
as vertical partitioning did. However, if we have a fewer processors than the
number of tasks, we have to combine multiple tasks onto a single processor in

11

an efficient way not to sacrifice the parallelism.

3. Communication Model
The purpose of scheduling is to allocate tasks onto a number of processors

so as to achieve the optimum performance of the process. This goal can be
accomplished by maximizing the utilization of available processors, while the
communication and synchronization activities between processors is kept to a
minimum. Intrinsically an efficient computation on a distributed memory mul-
tiprocessor is dependent upon not only the degree of parallelism of the pro-
grams but the ratio of computation cost over interprocessor communication
overhead. The minimizing of interprocessor communication overhead and
parallelization are two conflicting objectives in the allocation process. The
methods based solely on the first objective tend to utilize only few processors
for the sake of reducing communication overhead. On the other hand, methods
based solely on parallelization tend to increase the interprocessor communica-
tion overhead. One way to compromise these conflicting objectives is to overlap
computations and communications in the computation.

The cornputat i o n model used in [Cam85, CLE80, Lo83, Pat8 1, SaH86]
have assumed t h a t t h r imteciirig precedence data are initiated at the m d of the
computation. aricl t h c lialmiiqlrig data have to be received prior to the computa-
tion. Uc will i * * l t * t t o t h i s ~ i t ’ w Model A . The assumptions encountered in
model A may iiot maximize the computation / communication overlap when
there is more than one operation in the task, as in medium grain tasks.
Instead, in the proposed communication model, denoting Model B, all com-
munication activities of each task are accurately represented. The times that a
task produces outgoing data and the times it can proceed without the incoming
data are labeled in the model. Assuming the communication overhead be lesser
than the summation of the computation costs of parallelly executable portions
of the tasks, Model B produces better parallel codes than does Model A , as
indicated in Figure 5.

12'

Processor 1 Processor 1
x = ...
Y = x + e . .

z = ...
s e n d Y to processor 2

x = ...
Y = x + ...
s e n d Y to processor 2
z = ...

Processor 2 Processor 2
rece ioe Y from processor 1
v = ...
W = Y + V W = Y + V

v = ...
rece ive Y from processor 1

(a) Model A (b) Model B

Figure 5. Expected Parallel Codes based on the two ('amrnurlication models.

In Model A . I'rcicessor 1 sends Y upon cornplt>tioil v! and Processor 2
receives). h 1 1 prfnrming S, so that no overlappwt C I ~ " rat ion is allowed. In
Model l j , OH t t t 8 1 t her hand, Y is sent as Processor 1 has updated it and is
expected at thta nioirient Processor 2 requests. Thus, Model B provides over-
lapped operations of conimunication between Processor 1 and Processor 2, and
computation of S:(and S,.

Possibility of computation / communication overlap is examined by calcu-
lation the "benefit factor", which is a cost difference between parallel portions
of the task computation costs and the communication costs. If the benefit fac-
tor of a pair of tasks is positive, task allocation onto different processors will
achieve better performance than that onto the same processor. Overlap opera-
tion provides efficient ways of computation not only to a basic block, but also
to non-parallelized loop, as DOACR does in [PoB87] and other types of tasks,
such as DOALL loops and comparison blocks. We expand overlapped execution
to loops along the examples in the next section.

4. Loop Detection and Allocation
Fundamental source of extensive parallelism of programs is the loops. In

order to automate parallelism detection of loops, the compiler must look at the
data dependence relations in the loops. If a loop contains array data then the
data dependencies are somewhat more difficult to solve. If this is the case, an

13

array dependence relation has to be considered, that is more complex to process
than flow dependence relations in the scalar mode. In this chapter we intro-
duce techniques to detect loop types, such as DOALL, DOACR, and DOSEQ.
DOALL is a loop such that every iteration has no precedence relations so that
every iteration can begin simultaneously. Thus, DOALL loops can be distri-
buted onto processors in an arbitrary manner. DOACR is a loop type such that
iterations are weakly dependent so that overlapped operation may shorten the
completion time of the loop. DOSEQ type is similar to DOACR type but for in
which every iteration is strongly dependent. So distributing iterations of a
DOSEQ loop does not necessarily improve the loop performance, and in most
cases, they even worsen the performance due to interprocessor communication
overhead,

Every loop statement defines loop variable, lower bound, upper bound and
step size. Given FORTRAN loop body

DO 10 I = LB, UB, ST
. . .

10 CONTINUE

I ,LB,UB and ST he a I O O ~ I variable, a lower bound, a upper bound, and a step
size, respectively. T h e rriririt~er of iterations is then given by

Then, the upper bound is normalized as

UB,,,, =min ((N - I)X S T + L B , UB).

We will assume that an upper bound UB, in this discussion, has been normal-
ized for simplicity.

We define “array index vector” be an integer number, that specifies which
nested loop directly determines the indices of an array. If a loop index variable
is used as an array index within a loop, array index vector of the array index
position is set to “I” to indicate the array location is continuously changed per
every iteration. We also define “displacement” to be a displacement of the
array location in the direction of loop index variable. For the example shown
below, DI and DJ are the displacements for the loop variables I and J, respec-
tively.

L,
L2

DO 100 I = 1, 10
DO 100 J = 1, 10

A(I+D,) = B(J+Dj)

14

100 CONTINLE

Seen in L 2 , array index vector of A is set to ‘0’ since the array element of A is‘
unchanged during the execution of L,. When the loop L , is the encountered,
the array A ’ s location is dependent upon the loop variable. To identify the
location of A is closely related ti the loop variable the array index vector of A
is set to ‘ 1 ’ . Thus assigning an array index vector to ‘1’ implies that every loop
iteration modifies the location of the array element. Similarly, B’s index vector
to L , is ‘2’, that implies the array B’s location is modified at. the next immedi-
ate inner loop bodies. Seen in L,, B’s array vector is set to ‘I’ as is A ’s array
index vector to L ,.

After data dependence relation for the loop body has been constructed and
array index vectors and displacements have been computed, the compiler is
ready to test the loop types. It may perform some transformations on the
source codes to increase parallelism of the loops. So far, the R H I W compiler
does not include any of these transformations during the compilation, and only
can detect loop types for the given structure of the program

The loop type detection algorithm firstly perfortiis a) DOALL type detec-
tion algorithm that isolates DOALL loops, and then in the second pass, b)
DOSEQ type detection algorithm that isolates DOSEQ loops from a pool of
DOACR loops. Let I h p I 4 , k) be the displacement of an array A of which k-th
dimensional index expres5,oir is e z p r , and Vect (A ,Lvar , k) be the array index
vector of A at k-th dimension for an loop index variable Lvar. Using the nota-
tions defined above the following relations gives criteria to detect DOALL loops
on a distributed memory multiprocessor environment:
1) A loop is DOALL if none of arrays and scalar symbols are used and

defined within the loop.
2) A loop is DOALL if D i s p (A d , k) l D i s p (A , , k) and

VeCt(Ad,LUUr,k)= Vec t (A , ,Lvar ,k)= l for every pair of A d and A , , where
Ad is an array element defined and A , is an array reference.

Loop blocks that do not satisfy above two condition are assumed DOACR, and
are left for DOSEQ loop detection. In this report we give an example to test
the DOALL conditions instead of verifying the two conditions. The sample
loop below is clearly a DOALL according to the condition 1).

L ,

100 CONTINUE

DO 100 I = 1, 10
A(I+l) = C(1-1)

15

Consider the following loop body that is known to be parallelizable a t a
shared memory multiprocessor or pipeline processor environment:

L l DO 100 I = 1, 10
Sl A(I+l) = C(1)
Sz B(I) = A(1) X 2

100 CONTINUE

L 1 is not DOALL in a distributed memory multiprocessor environment,
unsatisfying the condition 2) since

Vect (Ad ,1,1)= Vect (A , ,1,1)= 1

and

Disp (Ad , I) = 1 > D k p (A , , 1) = 0 .
where Ad is A (I + 1) and A , is A (I) . The determination is correct since distri-
buting iterations in a card shuffling fashion encounters communication over-
head so as to send A (I+ 1) to the processor that executes the successive itera-
tion and to receive A (I) from the predecessor.

Loops that do not satisfy the above two conditions are considered as
DOACR or DOSKQ type loops. The DOSEQ isolation is performed based on
the communication modr*! shown in Section 3. Assurriing that every iteration of
the loops be distributed evenly onto the processors, a set of variables of an
iteration have to be sent to processors that need for successive iterations in
them. Let T,(@) be the earliest time that a variable 0 has to be received in
processors, and T d (@) be the latest time that a variable @ is ready to send in a
processor. Then the “benefit factor” of distributed computation BF for @ is .

BF@ = 7, (0) + 7L; - 7d (0) -7,

where ?Li is the execution cost of the loop body L,, and 7, is the communica-
tion cost. Thus, in the worst case, the benefit factor, BF- is

BF-=rnin(BFa,,BFa2, - - ,BFQn)

If BF- is positive, distributing iterations onto processors will provide better
performance than allocating the loop on a few processors. Otherwise, alloca-
tion on a single processor is preferable. Using the example above, array ele-
ment A (*) is ready a t the time Sz has done and is received at the time S1
starts. Thus, BF-(O, and as a result, L l is a DOSEQ loop. We can formal-
ize the loop type detection algorithm in Figure 6.

16

input : Loop body
output : Loop Type, either DOALL or DOACR

{ for a given loop body, L i , split DOALL and DOACR }
Loop-Type (hi) :=D OALL;
while no t done do
for every symbol @, such that Q,,, and @ d exist do
{ where @ d and a,, are a variable @ defined and used within L,}
if @ is scalar variable t h e n

Loop-Type(L,) :=DOACR;
done := true;

for every dimension, k do
else { if array then }

if (Vect(@,, ,Liwar,k)= V e c t (@ d , L i v a r , k) = l)
and (Disp (ad ,k) > Disp (@a ,k) the11

Loop-Type(L,) :=DOACR;
done := true;

else { skip }

(a) DOALL Type Detection Algorithm

input : DOACR loop
output : Loop Type, either DOACR or DOSEQ

{ for a given loop body, Li, split DOACR and DOSEQ }
while not done do

for every symbol a, such that Q,d and Q,,, exist do
{ where ad and Q,,, are a variable Q, defined and used w.An

Compute BE’(@);
if BF(Q,)sT, t h e n

Loop-Type(A i) :=DOSEQ;
done := true;

else { continue for next symbol }

(b) DOSEQ Type Split Algorithm

Figure 6. Loop Type Detection Algorithm

17

Parallel loop allocation on a distributed memory multiprocessor should
consider a parallelizing overhead caused either by a number of iterations or by
a storage allocation. A large number of iterations is preferable as many as pos-
sible. If loop bounds are known at compile time, the compiler can determine
the possible allocations based on a economic analysis. If a number of iterations
of a loop block is quite small, relatively large communication overhead will
force the loop block to be allocated to a single processor. If a loop bound is not
known at compile time, the economic analysis fails, and one should select possi-
ble parallelization in manual or interactively. The B-HIVE compiler assumes
unknown loop bounds be enough big to utilize the processors, unless compile
directive switch “SEQ” is preceded to a loop block so as to force the loop to a
DOSEQ type.

Loop blocks deal with array elements in the loop body, and in most cases,
array elements are linearly correspondent to the loop variable. That means the
array elements have to be distributed along the loop partitioning strategies
before loop execution. In order to prevent unnecessary waiting time to receive
the immediately requested variables, sending the variables as soon as they are
ready will reduce the waiting time. Similarly after loop execution updated
arrays have to be gathered at the compile time k n o w n prcwessor for the succes-
sive references. We define the location of an array as "origin processor” of the
array.

Parallel loop allocations always encoiin t er t w o coniniunication overheads,
before and after a loop execution. For a DOA,L loop given

L ,

100 CONTINLTE

DO 100 I = 1, 10
A(1-1) = B(I+2)

B has to be distributed before L , begins execution, and A has to be sent back
to the origin processor of A after L1 has finished.

Two iteration distributing strategies are possible. We can distribute every
iteration onto processors in a card shufffing fashion, or allocate several contigu-
ous iterations a t one processor and then next several onto the others until every
iteration is assigned. The first strategy is not powerful in DOALL loop imple-
mentation, since the origin processor (assuming all array variables reside at the
same processor) and others may have almost same number of iterations
although either the origin processor or the other processors do not start a t the
same time. Assuming that a processor that performs sending variables can do
next executions as soon as it initiates send operations, and a processor that ini-
tiates receiving operation must wait until the variables are received, the origin
processor can share more iterations while the others are receiving variables.

18

The compensation can be realized under the first strategy, however, the origin
processor will have three loops; one for to compensate communication before
loop execution, one for after loop execution, and the same number of iterations
shared on processors. This will cause difficulty in synthesizing loops.

Another drawback of the first strategy allocating DOALL loops can be
found from the array storage usages. For example, consider a sample routine
that uses and updates two contiguous array elements, respectively, as indicated
below.

L l DO 100 I = 1, 10
A(1) = B(1)
A(1-1) = B(I+1)

100 CONTINUE

If we use the first strategy, every iteration consumes two disjoint array ele-
ments B (I) and B (I + l) , and produces two array elements A (l) and A(1-1).
Thus, every processor needs 20 array elements. On the other hand, using the
latter strategy, each processor needs only 12 array elements since some of array
elements are used and updated repeatedly. Consequently, the latter strategy is
preferable to DOALI, loop DOACR loops can shorten the completion time of
loops to the lowest rost only when every iteration is evenly distributed onto
processors, since a loop is I)Od4CR if and only if the loop is not DOALL and
the benefit factor of distributed operations is positive. In our implementation
the latter strategy is applied to DOALL loops, and the first one is used for
DOACR loops.

Consider a DOALL loop L , , whose loop body execution cost is TL . Then
the extra iterations that the origin processor has to share for compensation is

and the number of iterations to be shared on processors is

where N is the total number of iterations and Pc is the number of available
processors. The total number of iterations that an origin processor should do is
Ncomp + l V d i s t . Then the loop bounds at a processor whose identification number
is PEno are determined by

and

19

UBp,yno =min(uB,LBd,,t f (Ncomp f (PEno - PEorg -I- 1) X Ndist - 1) X S T)
where PEorg is the identification number of the origin processor, and ST is a
step size of the loop.

Communication between a pair of processors is a distinct characteristics of
loosely coupled distributed memory multiprocessor architectures. The informa-
tion is directly passed through either a message passing or a circuit switching.
In any cases, a communication channel set up time is relatively expensive com-
pared to the actual communication cost of a unit data transfer. If a large
number of data is to transfer, and a new communication channel has to be rein-
itialized, communication overhead will increase proportional to the number of
data to transfer. If we send a block of data through the same channel that was
used, we can eliminate the communication channel set up time. To realize
block transfer operations, we define two array transfer primitives by

SEND (A(- * * I - * -) I = La, Ua, ST, Pto)

RECV(A(* 1 * *) I = La, Ua, ST, Pfr)
and

where La and Ua arts a lower bound and an upper bound of the block data
referring array A , and Pto and Pft are processor identification numbers to be
sent and to be received, respectively. Computing La and Ua are somewhat
similar to calculating the loop indices LB, UB. When an origin processor ini-
tiates distributing an array A , the two bounds are given by

La=LB+min(Disp(Aul,k), - - * ,Disp(A,,,k))

and

Ua= UB+max(Disp(Aul,k), - - - ,Disp(A,,,k))

where A,i is a array referenced in the loop body. When an origin processor col-
lects an array A to restore in it, the two bounds are determined by

La=LB+min(Disp(Adl,k), - - - ,Disp(Adm,k))

and

Ua= UB+max(Disp(Adl,k), * - ,Disp(Adm,k)).

Communication primitives must be carefully inserted so as to avoid “dead
lock” caused by a non-pair send-receive operations. To prevent dead lock, we
add conditional statements to match the pair of communications as

20

IF' (* * -) THEN

ENDIF
s e n d or rece ive p r i m i t i v e s

Consider the general format of the expected parallel codes for DOALL loops, as
indicated below.

Ll

100

*4 (. . .) = . . .
. . .

B (. . .) = . . .
. . .

DO 100 I = LB, UB, ST
. . .

) . . . = A (. . . I . . .
. . . si

S, B (. . . I . . . - . . .) - - . . .
CO NTI NUl?

(a) St.cliiPnt.ial DOALL Type 1,oop

A (. .) = * . *

{ Distribute array A to PE, through PE,}
Compute array A's indices, La, Ua for PE,;
SEND (A(* * * I - - -) I = La, Ua, ST, PEI)

Compute array A 's indices, La, Ua for PE,;
SEND(A(. . . I * * -) I = La, Ua, ST, PE,)

. . .

. . .
B(*.*)= * . * . . .
{ Start loop }
Calculate LBO,, and UBOrg;
DO 100 I = LBorg, UBorg, ST

si
. . .

1 . . . = A (. . . I . . .
. . .

s, B (. . . I . . . - . . . 1 - . . .

21

100 CONTINUE
{ Restore Scalar values }
Calculate PElaJt , in which the last iteration is performed;

{ Restore Array B by receiving from processors }
Calculate array B’s indices, La, Ua for PE,;
R E C V (B (- . . I - - .) I = La, Ua, ST, PEI)

Calculate array B’s indices, La, Ua for PE,;
) I = La, Ua, ST, PE,) R E C V U - - * I * * *

RECV (I, PEl,,t);

. . .

-
(b) Parallel code in an origin processor

Compute LBdist and UBdi,,;
DO 100 I = LBdidt, uBdist, ST

. . .
IF (f i r s t deration) THEN

Calculate array A ’s indices, La, Ua;
RECV(A(- . . I . . *) I = La, Ua, ST, PEorg)

ENDlF
) . . . = A (. . . I . . .

. . . si
Sk B(. . . I . . . - . . .)-- . . .

100 CONTINUE
{ Pass Updated Scalar to origin processor }
IF (last iteration) THEN

SEND (I, PEorg)
ENDIF
{ Pass Updated Array to PEorg }
Calculate array B’s indices, La, Ua for origin processor;
RECV (B(- I - * -) I = La, Ua, ST, PEorg)

(c) Parallel code in non-origin processors

Figure 7. Expected Parallel codes for DOALL Loops.

22

A boolean expression, f i r s t i t era t ion ensures one receiving operation during
loop iterations by checking whether I = LB,,,, . Similarly, last iteration
ensures one send operation after completion of the entire loop to restore the
scalars that are updated during the iterations.

Several loops sometimes form a nested loops, in which either DOALLs or
DOACRs are included. If loop size is not known at compile time, the compiler
chooses an outermost DOALL loop as a parallelizable loops. As seen Figure 7,
all processors share the iterations for the same amount of time unless the
number of iterations is small enough to partition onto few processors. Thus the
compiler assumes all processors have their own iterations to do, and this
assumption prohibits further parallelization of the loop body that every proces-
sor has. Consequently, the loop body of DOALL loops are assumed sequential
codes. We will show the actual results of nested DOALL loops in the next
chapter.

Iteration distributing strategy in a card shuffling fashion is used for
DOACR loop allocation. The expected parallel codes for given DOACR loops
are similar to that of DOALL types except the variables that are used at the
following iteration are sent to processors they need and that are received from
the predecessors before they are needed. During DOACR loop synthesis, the
compiler does not need to change the upper bound of the loops. The step size
has to be modified to ST x Pe as does card shuffling, and the lower bound has
to be normalized to correct the initial index values in every processor.

Synthesizing the codes for variables that are “reference-only ’ arrays are
the same as DOALL loops, such that reference-only arrays are the ones whose
elements are referenced but not redefined in the loop body. Using the notations
defined for DOALL loops, we can formalize the expected parallel codes for a
given example, as indicated in Figure 8.

23

. . .
L l DO 100 I = LB, UB, ST

. . . SP
S, A (. * * I + D , . * .) = * e -

. . .
1 . . . = A (. * . I . . . srn

se . . .
100 CONTIiWE

(a) DOACR loop code

A (. . .) = . . .
. . .

{ Code for reference-only array distribution is identical to

DO 100 I = LR, UB, Pe xST
DOALL loops }

L1 . . . SP
S, A (* * . I + D , . . -) = * * .

IF' (N O T last iteratioti)THEN

END
SEND (A(* * * I+DI * *), mod(PEn0 + D I))

. . .
IF' (N O T first iteration)THEN

ENDIF
RECV(A(- - - I - - -) , r n o d (P e + P E n o - D r))

1 . . . = A (. . . I . . .
srn
se . . .

100 CONTINUE
{ Restore scalars }
Calculate PEI,,, in which the last iteration is performed;

{ Restore A }
calculate A 's indices, La, Ua for PEI
RECV(A(* - - I - -) I=La, Ua , P e , PE,)

RECV (I, PEl,t)

. . .
calculate A's indices, La, Ua for PE,
RECV(A(. * . I . - .) I=La, Ua , P e , PE,)

(b) Parallel code in an origin processor

24

L DO 100 I = LB+ mod (P e + PEno - PEorg) , UB, Pe X ST
. . . SP

S,, A(.*.I+D,*..)=
IF (NOT last i teration) THEN

END

IF (f i rs t i t era t ion) THEN

ELSE

ENDIF'

SEND(A(-**I..-), mod(PEno +&))

. . .

R E C V (A (. - - I * * ' 1, PEow

RECV (A(- * - I * * *), mod(Pe + PEno - 01))

1 . . . =A(. . . I . . .
s7n

s e
. . .

100 CONTINUE
{ Restore scalars }
IF (last iteration) THEN

SEND (I, PEorg)
ENDIF
{ Restore A }
calculate A 's indices, La, Ua for PEno
SEND (A(- - I * - -) I=La, Ua , P e , PEno)

(c) Parallel code in non-origin processors

Figure 8. Expected Parallel codes for DOACR Loops.

We will consider an actual DOACR loop routine in the next chapter.

CHAPTER 3

CASE STUDY : AIRSD

The AIRSD program [Pus781 is a huge program consisting of a large
number of statements with several subroutine calls, numerous variables and
many data dependencies between statements ought to be considered. We do
not go through the details of routines of the ALR3D program package, since our
discussion in this report is to show how a parallelizing compiler can automati-
cally transform sequential codes into parallel versions.

Before doing the actual restructuring or synthesizing the codes, few con-
trol flow statements need to be rearranged for simplicity. The AIR3D program
extensively uses branch statements in which the condition is determined at run
time. Thus, the number of statements to be executed would depend upon the
value of the input data. Furthermore, compilers cannot follow the control
flows except for simple cases, since in many cases there are cyclic control flows
between statements. We therefore replace branch statements into correspond-
ing comparison statements, in which the number of statements within a com-
parison block is deterministic. This replacement make the speedup analysis
easier.

Several branch type blocks exist in the package. Denoting a “forward”
branch such that all branch targets always follow branch instructions, and a
“backward” branch such that branch targets locate before the branch instruc-
tion, we describe a way to restructure branch blocks into corresponding com-
parison blocks. Common branch structures in AIR3D package are ones having

.

‘IF (B-ezpr) GOTO Si’
where Si is a branch target to jump if B - ezpr is true. Branch blocks shown in
XXM, YYM and ZZM routines use this structure.

A backward branch block, in many cases, simulates a loop, similar to
“while” structures in Pascal. However, it is hard to restructure into a loop,
since there are many uncertainties to determine the loop types. In the experi-
ments, we do not consider restructuring backward branch blocks. Another
branch structure is to use three branch targets as

‘IF (B - ezpr) S,, S,, S3’,
where S,, S,, S3 are the branch targets among which one of three locations is
active according to B - ezpr condition. If the
can be restructured similar to ‘GOTO’ types.

instruction is forward branch, it
We show an example of ‘GOTO’

25

28

type forward branch restructuring in Figure 9.

sbO

sb 1

sb 2

sbn

sbc

sb 0

sb 1

sb 2

Sbn
Sbc

IF(B - ezpr GOTO Sb 1

IF(B-ezpr2)GOT0 sb2
. . .

IF(B - ezpt,) GOTO Sb,
. . .

GOTO Sbc
. . .

GOTO Sbc
. . .

GOTO Sbc
. . .

CONTINUE

(a) A Bran(h Block with n Branches

IF(.NOT.(B - ezprl).AND.(.NOT.(B- ezpt2).AND. * * *

.AND.(.NOT.(B - ezpr,)) THEN
. . .

ELSE IF(BS,) THEN

ELSE IF(BS2) THEN
. . .

. . .

ELSE

ENDIF
. . .

(b) Corresponding Comparison block restructured from (a)

Figure 9. Forward branch block restructuring.

27

1. Sample Basic Block : FLUXVE
Among several routines of the AIRSD program, AMA TRAY, DEBUG, and

FLUXVE are the routines that have few basic blocks (refer to Appendix A). A
basic block is a parallelizing source by the flexible granularity model associated
with the communication model. We choose FLUXVE as a sample routine.
Applying the vertical partitioning and the associated scheduling algorithm, we
can detect parallelism of the routine so that multiprocessor architectures could
be utilized.

Subroutine callers pass arguments through a processor that activates callee
routines. We assign a processor, say ‘1’ be the origin processor of the caller’s
arguments. Thus all undefined values referenced are assumed to be in the pro-
cessor ‘1’. Consider the actual codes shown in Appendix A-a). J, KL, R 1 , etc
of the first statement are are thought to be in P E , .

Theoretically, all the disjoint medium grain task sets can be allocated to
different processors. However, due to a limited number of processors, multiple
task set have to be allocated to the same processor. To realize medium grain
task allocation, we begin to allocate the longest path task and earliest finishing
time task first. During the allocation a “processor time space table” is main-
tained, which gives the information such as when processor is ready to accept
tasks. The processor tinding procedure searches the processor time space table
to choose the “best fitting’ processor, in which the time space gap becomes
minimum. In this way the task can start by the latest starting time of the task
or the task can start as soon as possible if it cannot start a t its desired time. If
there are more than two tasks whose path costs are the same, then the earliest
finishing time task is chosen for allocation. If there is a time space, then an
unallocated small task can be inserted (and can be finished within the time
space), prior to the longest path task allocation.

This strategy simulates a statement reordering, which is a technique to
change the order of statements retaining the same result. Since a pair of tasks
can be allocated onto different processors until their time boundaries are
preserved, allocating small tasks that can finish earlier can be allocated before
the task that starts after the small task has been finished. We formalize the
basic block allocation algorithm, as below.

28

1. Sort tasks in descending order of the task cost;
2. while task pool is not empty do
2.1. Choose the longest task, Tp m ax from the task pool;
2.2. Find the best fitting processor, Ppmax for Tpma,;
2.3. while exist do

Check time space gap of PPInax;
Choose the longest task, Tpl that can fit in the space gap

if TpI exists then
and that can finish within the space gap;

allocate TpI onto PPmax;
delete Tpt from the task pool;

else reset exist;
2.4. allocate Tp m a r onto Ppma,;

Figure 10. Basic Block Task Allocation Algorithm.

In the experiments, we use four identical processors to allocate tasks. We
can change the numher of processors interactively during the synthesis phase.
We show the synthesized parallel codes of FLUXVE routine in Appendix A-b).

2. Sample DOALL Loop : XXM
A parallel loop allocation is a key issues in the loop implementation. AB

we have described in Chapter 2, DOALL loops are free from finding processors
during the allocation since virtually all processors share the loops. Every itera-
tion is shared based on the loop body cost and the communication overhead
needed to distribute arrays.

Among several routines in AJR3D package, XXM, YYM, ZZM and
DIFFER have one or several DOALL loops within the routines. Before restruc-
turing the sample codes, the branch blocks are replaced with comparison
blocks, and then loop type detection algorithm determines as is DOALL
through the algorithm shown in Figure 6. Using the algorithm of Figure 6,
XXM is seen to be DOALL type and its loop body cost is 2652 time units.' The

'Timing results used in this report are the arbitrary values, not of the real machines. The time for
one floating point multiplication is assumed 80 unit times.

29

loop body cost is an average execution cost of one iteration, which realizes all
comparison blocks are evenly hit during the execution. Assuming the commun-
ication overhead be 1000 time units,2 the origin processor will execute only one '
more iteration than non-origin processors since the time space for one iteration
provides enough time space for non-origin processors to receive necessary vari-
ables and to restore the updated values in the origin processor upon completion
of the loop.

The DOALL loop allocation algorithm is given in Figure 11. The algo-
rithm firstly finds the origin processor that will start the first iteration and are
responsible for distributing the arrays. The origin processor is easily deter-
mined by searching processors that reside the task color number of the loop,
where the task color number was assigned during the task partitioning. Then
it synthesizes the loop bounds and loop header. Every statement in the loop
body is allocated to every processor one by one by adding communication prim-
itives and associated comparison statements. When the loop body encounters
the loop label, it begins restoring the arrays and scalars in the origin processor.
We show the synthesized parallel code of X X M , YYM, and ZZM in Appendices
B, C, and D, respectively.

*1000 of communication overhead simulates a hypercube environment, such as the 2Psc machine.
Compared to the cost of multiplication (SO), the communication coat is fairly large enough to simulate
communications in a looaely coupled distributed multiprocessor environment.

30

input : DOALL loop
output : Parallel DO Loop

1. Find the origin processor by task color number;
2. Append loop bound onto processors;
3. Put ‘DO xxx L,,, = LB, UB,ST’;
4. for every statement, Si do
4.1. while used variables are not available in a processor PEno do

if processor is PEorg then

if processor is PEno then
Put send primitives;

Append ‘IF’ (f i rs t iteration) THEN’;
Put recv primitives;
Append ‘ENDIF’

4.2. Append Si;

5. while defined variables exist in a processor PEno do
5.1

5.2

{ Restore defined variables to PEorg }

if processor is PEorg then

if processor is PEno then
t ’u t re c 17 p r I m i t.ives;

Append ‘IF (last iteration) THEN’;
Put send primitives;
Append ‘ENDIF’;

Figure 11. DOALL Loop Allocation Algorithm

The drawback of DOALL loop allocation in Figure 11 is that it may not
fully utilize the processors if the number of iterations is not large enough to be
shared by every processor. If this is the case, then fewer processors will execute
iterations although loop body could be parallelized further than that can be
detected as per the flexible granularity model). For a partially shown DOALL
loop of RHS routine given below, assume that KMAX iterations are distributed
onto a Pc -processor system. With K M A X = P e , each processor performs one
iteration. The entire loop body is put into one processor and then, the comple-
tion time of the loop would be the loop body cost. However, if Pe 2 2 x KMAX,
every iteration of L , can assign KMAX processors, and the inner loop body can
use another processor to shorten the completion time of the loop body. In this
case, better speedup can be achieved than when KMAX=Pe.

31

KL = (L-l)*ND+K
Rl=YY (K, 1)

CALL FLUXVE (. . .)
DO 12 N=1,2
F (K, N) =FV (N) 12

L, DO 10 K = I,KAMAX
KL = (L-l)*ND+K
R1 = YY(K,l)
R2 = YY(K,2)
R3 = YY(K,3)
R4 = YY(K,4)
CALL FLUXVE(J,KL,Rl ,R2,R3,R4)
DO 12 N = 1,5 L2

12 F(K,N) = FV(N)
10 CONTINUE

R2=YY (K, 2)

R3=YY (K, 3)
R4=YY (K, 4)
DO 1 2 N=1,2

12 ' F (K,N) =FV(N)

(a) A partial code from RHS routine

I DO10 K=l,KMAX I

Figure 12. More Speedup can be achieved by Loop Body Partitioning.

We can designate processors manually a t compile time, allowing a number
of processors to execute a loop body together. Several processors then, can
share the loop body parallelism. In most cases, however, proposed DOALL loop
allocation algorithm is good enough as the number of iterations is generally
larger than the number of processors. In this report, we do not consider loop
body parallelization.

3. Sample DOARC Loop : GRID
Let us consider a sample DOACR loop of GRID routine. The variables N

and array G have to be passed from one processor to the successive processors

32

that perform the following iterations. Assume the origin processor be P E , in
the 4-processor system. The processor 1 passes N to the processor 2 upon com-
pletion of S1, and performs S2 and S,. Upon completion of S 3 the processor 1
also transfer G(1 ,J) to the processor 2. While the processor 1 performs S2 and
S3, the processor 2 has to wait for N to be received from the processor 1. As
soon as N has arrived, the processor 2 begins doing S,. Similarly the processor
2 sends N to the processor 3 upon completion of S, and G (J) upon completion
of S3, respectively. By replicating these processes, every iteration is performed
in a “software-pipelining” fashion. Software-pipelining operation is advanta-
geous only when the communication overhead is less than the overlapped com-
putation cost. The example given in Figure 13 a) is DOACR while communica-
tion cost is less than 810 unit time as seen in Figure 13 b). The expected paral-
lel codes are given in Figure 13 c).

33

L , DO 912 J = NB11,NB2
(2 2) SI N = N + l
(788) S, GN = (l,O+EPs/SQRT(FLOAT(N+4)))**N
(104) S, G(1,J) = G(1,J-l)+DX*GN
912 CONTINUE

(a) A Sample DOACR Code from GRID routine

i
P

I i + l

(b) Communication between processors

C ALLPE IS TOTAL Nl'MBER OF PROCESSORS
C MYPE IS MY PROCESSOR ID NUMBER
C PEORG IS THE PROCESSOR THAT INITIATES LOOP
C MZZ, LZZ, LQQ ARE TEMP. VALUES

MZZ = NB2
LZZ = NE311
LQQ = MOD (ALLPE + LZZ + MYPE - PEORG)

C BEGIN OF LOOP
DO 912 J = LQQ,NB2,ALLPE

IF (J.NE.LZZ) THEN

END
N = N + l
IF (J.LT.MZZ) THEN

ENDIF
GN = (1.0 +EPS/SQRT(FLOAT(N+4)))**N
IF (J.NE.LZZ) THEN

I?; XT)
<;(1 , . I) r= G(1,J-l)+DX*GN
IF (J . L 1 MZZ) THEN

ENDIF

RECV (N, MOD(ALLPE + MYPE -1))

SEND (N, MOD(MYPE + 1))

RECV (G(1,J-1), MOD(ALLPE + MIYE

SEND (G(l,J), MOD(M1'PE + I))

912 CONTINI'E

(c) Expected Parallel codes.

Figure 13. DOACR Loop Allocation and Code Synthesis.

CHAPTER 4

PERFORMANCE EVALUATION

We have implemented the major portion of the B-HIVE parallelizing com-
piler. The compiler accepts input programs written in FORTRAN, along with
the system configuration, produces an allocation scheduling list, and finally
produces separate program for each processor. We did not implement a
software package to analyze precisely the timing result of the routines. How-
ever, the compiler gives timing information during the scheduling phase and
the code synthesis phase. Since the static allocation distributes the tasks based
on the processor time space table, the time information in the table gives data
for precise evaluation. However, it cannot fully support timing issues. For
example, DOALL loop allocation algorithm does not consider how many itera-
tions the loop should perform, and it assumes one iteration be assigned onto
one processor except the origin processor. Thus, the processor time space table
does not project the effect of iteration number a processor should perform. We
therefore calculate t tit. trrriing rtwlts in hand, based on the timings of the pro-
cessor time space table.

We choose a number of AlH3D routines and process as stated in Chapters
1 and 3. The subroutines used in our experiment were X X M , YYM and ZZM
for DOALL cases, FLUXVE and AMATRX for basic blocks, and several other
routines are considered for DOACR loops. The parallel codes shown in this
report are restructured automatically but for the DOACR routines. Thus, we
do not evaluate the timings for the DOACR type routines.

In the experiment, we defined several working environments, setting the
number of iterations, the number of processors, and the communication cost.
The number of processors is varied, using 4, 16, 32 processors. We put the syn-
thesized parallel codes for the 4-processor system in the Appendices. We
assume that the communication cost between any two processors will be the
same (disregarding differences due to the computer network and the distance of
the two communicating processors). We also vary the communication cost be
1000 and 5000 unit times per word.'

'Communication cost of 1000 simulates a hypercube MIMD machines, such as the Zpsc Hypercube.
Communication cost of 5000 are used for the comparison purpose.

35

36

Parallelizing encounters overhead, such as synchronization, communica-
tion overhead, and an extra code execution overhead. Thus the speedup is not
always proportional to either the number of processors or the degree of parallel-
ism. The speedup value is calculated from dividing the sequential execution
time by the turn around time.

The timing results and the speedup factors for X X M are shown in Table I
and Table 11. The results show that the parallel codes can achieve up to 28 in
the 32- processor system. This implies that the transformed DOALL loops are
highly parallelized, and as a result, the compiler can transform the DOALL
loops effectively. The better speedup achievement is observed when the
number of processors and the number of iterations are increased. However,
increment of processors does not necessarily increase the speedup when the
number of iteration is small. For example, when we increase the number of
processors from 16 to 32 for 10 iterations, the speedup values are decreased, as
indicated in Table I and 11. It is also observed that the speedup values are
decreased when the unit communication cost is increased, as expected. We
observed the results for YYM and Z Z M . The trends seem quite similar to
XXM.

The B-HIVE compiler can also improve speedup factors for basic blocks,
such as FLUXVE, that has several assignment statements only. Normally it is
not known to be parallelizable, but the flexible granularity model provides a
way to obtain parallelism as we have described. The simulation results when
the communication cost be 1000 and 5000 unit times, the speedup factors are
1.1 and 1.0, respectively. The unit speedup a t 5000 is expected, since the com-
piler avoids excessive parallelizing automatically by assigning a whole routine
to a single processor. The timing results are given in Table VII.

37

of PE
4

Table I. The Total Times Needed for Execution of Subroutine X X M .

Number of Iteration (Comm. cost = 1000)
10 100 1000

11253 69597 666297

32 I 11273 I 19229
I 16 I 9365 I 25277 I 173789 1

93485

I 32 I 2.39 I 13.82

I Number of Iteration (Cornrn. cost = 5000) I

28.37

103.594 -- ---.-- 21382 26686

Table 11. Speedup Result for .Y.VM

2.88 10.5 1 15.26

I I Number of Iteration (Conzrn. cost = 5000) I

1.60 14.63
32 1.26 9.96 25.60

38

sfi of PE

Table 111. The Total Times Needed for Execution of Subroutine YYM.

Number of Iteration (Cornrn. cost = 5000)
10 100 1000

32 22627 101587 -

- -
--.

of PE
4

16
32

- -- . - -
&umber of Iteration(Cnmm. cost = 1000)

1000
2.40 3.80 3.98
2.98 10.65 15.29
2.02 12.48 27.76

- -_
. - 10 100

I " I I 1 J

ofPE
4

I 4 I 17467 I 79507 I 714007 I

10 100 1000
1.64 3.55 3.95

I 16 I 18067 I 32167 I 192907 I

16
32

L 32 I 22627 I 28267 . - 1 110047

1.58 8.78 14.62
1.26 9.99 25.63

Table IF'. Speedup Result for I ' I'M

I I Number of Iteration (Cornrn. cost = 5000)

39

4
16

Table VI. The Total Times Needed for Execution of Subroutine ZZM.

11557 72057 690807
9477 25977 179977

(Comm. cost = 1000)
1000

32 I 14037 1 22287 99287 I

of PE
4

I I Number of Iteration (Comm. cost = 5000) I
10 100 1000

19807 77557 696307
16
32

17727 27787
22287 27787

Table \T Speedup Result for ZZM

- -
Nuiilber of Iteration (Comm. cost = 1000) - - -- -__ -

#of PJ5 10 100 1000
4 2.41 3.82 3.98

32 I 1.99 I 12.37
I 16 I 2.94 I 10.60 I 15.28 I

27.70 I

* ofPE
Number of Iteration (Comnz. cost = 5000)
10 I 100 1000

1 4 - r l.il I 3.55 I 3.95 I
16
32

1.57 8.75 14.61
1.25 9.91 25.58

40

Table VII. The Total Times Needed for Execution of Subroutine FLUXVE.

of PE
1
4

2978 1.1

Total Time Speedup
3268 1 .o
3268 1 .o

CHAPTER 5

CONCLUSION

An approach for parallelizing sequential program has been developed in
this work. The vertical partitioning and appropriate scheduling is used in the
B-HIVE parallelizing compilers. The performance of the parallelizing models is
determined using several routines of AlR3D program package. Especially, the
communication overhead is considered to evaluate the task allocation on a dis-
tributed memory multiprocessor system. As seen in the parallel code synthesis
examples, the B-HIVE compiler can transform the sequential codes into parallel
version automatically. The speedup factor is quite close to the number of pro-
cessors when the number of iterations is large, and the results seems superior to
the results in [EBS84]. The current version of the compiler can restructure
DOALL loops, basic blocks automatically, and will be updated to restructure
the DOACR loops.

Beyond paralleli zing, the parallelizing compiler should consider a way to
restructure branc. t i instructions, especially the forward branch type codes,
automatically. Upon completion of the compiler implementation, we are plan-
ning to test the correctness of the compiler for several scientific packages, such
as EISPACK and LINPACK. Actual test will also be conducted thereafter.

1. Software Packages Developed
So far, we have implemented several software packages that are used in

the various phases of the B-HIVE compiler a t North Carolina State University.
Following is the list of software packages classified as per the compiling phases.

(1)

(2)

(3)
(4)

Phase 1 : FORTRAN Program Syntax Verifier: implementation com-
pleted.
Phase 2 : Program Partitioner: implementation completed.
Phase 3 : Basic Block Partitioner: implementation completed.
Phase 4 : Infinite Processor Scheduler.

a) Loop Type Checker has been implemented.
b) Basic Block and DOALL Loop schedulers have been implemented.
c) DOARC and DOSEQ Loop schedulers are under construction.

41

42

(5) Phase 5 : Finite Processor Allocator.
a) Basic Block and DOALL Loop BLllocator have been implemented.
b) DOACR and DOSEQ Allocators are under construction.

(6)

(7)

Phase 6 : Code Synthesizer. It has been implemented.
Phase 7 : B-HTVE Coordinator / object code generator. It is under con-
struction based on the communication primitives designed for DOALL
loops and Basic blocks.

2. Future Plan
We will continue the implementation of the parallelizing compiler and

make it operational on a real machine (B-HIVE). The necessary work to be
done during '88 and '89 includes :

Completion of DOARC and DOSEQ loop scheduler associated with allo-
cat ion strategy development.
Study on subroutine calls and argument passing strategies on a loosely
coupled distributed memory multiprocessor environment.
Extensive evaluation of the compiler with testing. Testing will include
restructuring of AlR3D package and other scientific packages.

(1)

(2)

(3)

3. Suggestion and Comment
The parallelizing compiler work is a time consuming project. It requires

highly advanced techniques in various fields, such as parallel processing, com-
piler construction, data structure implementation, and programmings, and etc.
If additional funds are awarded, we could complete the implementation of the
parallel compiler soon, and newer techniques could be developed. With the
NASA's support, we have no doubt that our compiler will be the first actual
parallel compiler for the loosely coupled distributed memory multiprocessor
environment.

43

R E F E R E N C E S

[AAGSS] D.P. Agrawal, W.E. Alexander, E.F. Gehringer, R. Mehrotra and
J. Mauney, “B-HIVE Project: Present and Future, in Book”
Sup e r c o mpu t e rs: Algorithms, A r c hit e c t u r es and Sc ie nt i$c Co mpu-
tation, UT Press, Austin, TX 1986, pp. 11-18.
S. Ahuja, “Linda and Friends,” IEEE Computer, vol. 19, no. 8,

J.R. Allen, “Dependence Analysis For Subscripted Variables and
Its Application to Program Transformation,” Ph.D. Thesis, 1983,
Rice University, Houston, Texas.
J.R. Allen and K. Kennedy, “A Parallel Programming Environ-
ment,” IEEE Software, vol. 2, no. 4, July 1985, pp. 21-29
R.G. Babb 11, “Parallel Processing with Large-Grain Data Flow
Technique,” IEEE Computer, vol. 17, no. 7, July 1984, pp. 55-61.
M.L. Campell, “Static Allocation for a Dataflow Multiprocessor,”
Proc. of 1985 International Conference on Parallel Processing,

[Cat871 C.J. Catherasoo, Separated Flow Simulations using the Vortex
method o n a t 1s ptwube,” AIAA 8th Computational Fluid Dynam-
res Conference, June 9-11, 1987, pp. 81-86.
W.W. Chu, L.J. Holloway, M.T. Lan, and K. Efe, “Task Alloca-
tion in distributed Data Processing,” IEEE Computer, vol. 13, no.

E.G. Coffman and R.L. Graham “Optimal scheduling for two-
processor systems,” Acta Inforrnaticu, Vol.1, No. 3, 1972, pp. 200-
213.
2. Cvetanovic, “The Effects of Problem Partitioning, Allocation,
and Granularity on the Performance of Multiple-Processor Sys-
tems,” IEEE Tran. on Computers, vol. C-36, no. 4, Apr. 1987, pp.

D.S. Eberhart, D Baganoff and K.G. Stevens, Jr, “Study of the
Mapping of Navier-Stokes Algorithms onto Multiple-
Instruction/Multiple-Data Stream Computers,” NASA Tech.
Memo. 85945, NASA Jul. 1984
Efe, “Heuristic Models of Task Assignment Scheduling in Distri-
buted Systems,” IEEE Computer, vol. 16, no. 6, June 1982, pp.
50-56.

[Ahu86]

[A11831
Aug. 1986, pp. 26-34.

[AIK85]

[Bab84]

[Cam851

1985, pp. 51 1-5 I7

[CHL80]

11, NOV. 1980, pp. 57-69.
(CoG721

[Cve87]

421-432.
[EBS84]

(Efe82)

44

[FER841 J.A. Fisher, J.R. Ellis, J.C. Ruttenberg, and A. Nicolau, “Parallel
Processing: A Smart Compiler and a Dumb Machine,” Proc. of the
ACM SIGPLAN ’84 Symp. on Compiler Construction, June 1984,
pp. 37-47.

[Fly721 M. J. Flynn, (‘Some Computer Organizations and their
effectiveness,” IEEE Trans. on Computers, vol. C-21, no. 9, pp.
948-960, September 1972.
D. Grajski, D. Kuck, D. Lawrie, and A. Sameh, “CEDAR: A Large
Scale Multiprocessor,” Proc. of the 1983 International Conference
on Parallel Processing, Aug. 1983, pp. 524-529.

[Han77] P.B. Hansen, The Architecture of Concurrent Programs, Prentice
Hall Inc., 1977.

[Hoa78] C.A.R. Hoare, “Communicating Sequential Processes,” CACM,
Vol. 21, no. 11, Aug. 1978, pp. 666-677.

[KaN84] Hironori Kasahara and Seinosuke Narita, “Practical multiproces-
sor scheduling algorithms for efficient parallel processing,” IEEE
Trans. on Computers, Vol. C-33, No. 11, Nov. 1984, pp. 1023-1029.
D.J.Kuck, R.H. Kuhn, D.A., Padua, B. Leaure, and M. Wolfe,
“Dependence graphs and Compiler Optimizations,” Proc. of the
8th ACM Symp. on Principles of Programming Languages, June

J.T. Kuehn and H.J. Siegel, “Extensions to the C Programming
Language for SIMD/MIMD Parallelism,” 1985 International
Conference on Parallel Processing, August 20-23, pp. 232-235.
V.M. Lo, “Task Assignment in Distributed Systems,” Ph.D thesis,
Univ. of Illinois, Oct. 1983.
J. Leu, D.P. Agrawal, and J. Mauney, “Modeling of Parallel
Software for Efficient Computation-Communication Overlap,”
Fall Joint Computer Conference, Oct. 25-29, 1987, pp. 569-575.
D.A. Padua, “Multiprocessors: Discussion of Some Theoretical and
Practical Problems,” Ph.D. Thesis, 1979, University of Illinois at
Urbana- C hampaign.
D.A. Padua, D.J. Kuck, and D.H. Lawrie, “High-speed Multipro-
cessors and Compilation Techniques,” IEEE Tran. on Computers,
vol. C-29, no. 9, Sept. 1980, pp. 763-776.
J.M. Swisshelm and G. M. Johnson, (‘Numerical Simulation of
Three-Dimensional Flowfields Using the Cyber 205,” in Supercom-
puter Application, ed. by R.W. Numrich Plenum Press, New York

[GKL83]

[KKP81]

1981, pp. 207-218.
[KuS85]

[Lo831

[LAM871

[Pad791

[PKL80]

[SwJ85]

1985, pp. 179-195.

45

[Pat841 G.C. Pathak, “Towards Automated Design of Multicomputer sys-
tem for Real-time Applications,” Ph.D. Thesis, 1984 , North Caro-
lina State University at Raleigh.
C.D. Polychronopoulos and U. Banerjee, “Processor Allocation for
Horizontal and Vertical Parallelism and Related Speedup
Bounds,” IEEE Trans. on Computers, vol. C-36, no. 4, Apr. 1987,

C.D. Polychronopoulos and D.J. Kuck, “Guided Self-Scheduling:
A Practical Scheduling Scheme for Parallel Supercomputers,”
IEEE Tran. on Computers, vol. C-36, no. 12, Dec. 1987, pp. 1425-
1439.
C.D. Polychronopoulos, D.J. Kuck, and D.A. Padua, “Execution of
Parallel Loops on Parallel Processor Systems,” Proc. of I986 Inter-
national Conference on Parallel Processing, Aug. 1986, pp. 519-
527.

[Sha86] E. Shapiro, “Concurrent Prolog: A Progress Report,” IEEE Com-
puter, vol. 19, no. 8, Aug. 1986, pp. 44-58.

[SaH86] V. Sarkar and J. Hennessy, “Compile-time Partitioning and
Scheduling of Pal allel Programs,” ACM SIGPLAN 86 Symposium
on (‘ompi ler Construction, June 23-27 1986, pp. 17-26.
H S Stone, “Multiprocessor Scheduling with the Aid of Network
Flow Algorithm,” IEEE Trans. of Software Eng., Vol. SE-3, 1977.

[PoB87]

pp. 410-421.
[PoK87]

[PW86]

[St0771

46

APPENDICES

A: Subroutine FL UXVE

B: Subroutine X X M

C: Subroutine YYM

D: Subroutine ZZ,M

APPENDIX A. SUBROUTINE 'FLUXVE'

a) Sequential Code

RR = l./Q(KL,l,J)
U = Q(KL,2, J) *RR
V = Q(KL,3, J) *RR
W = Q(KL,4,J)*RR
QS = R4+Rl*U+R2*V+R3*W
PP = GAMI*(Q(KLr5,J)-.5*Q(KL,1,J)*(U*U
RJ = 1. /Q (KL, 6, J)

r*

QSINFJ
PINFJ =
FV(1) =
FV(2) =
FV(3) =
FV(4) =
FV(5) =
FV(1) =
FV(2) =
FV(3) =
FV(4) =

= (R4+Rl*UINF+R2*VINF+R3*WINF)*RJ
PINF*RJ
Q (KL, 1, J) *Qs
Q (KL, 2, J) *QS+Rl*PP
Q (KL, 3, J) *QS+R2*PP
Q (KL, 4, J) *QS+R3*PP
(Q (KL, 5, J) +PPI *QS-R4*PP
FV(1) -QSINFJ
FV (2) -UINF*QSINFJ-R1 *PINFJ
FV(3) -VINF*QSINFJ-R2*PINFJ
FV (4) -WINF*QSINF J-R3*PINF J

7+W*W))

FV(5) = FV(5) - (EINF+PINF) *QSINFJ+R4*PINFJ
RETURN
END

9

9

APPENDIX A (continue)
I

b) Parallel Code

FILE 1 {Processor 1)

CALL SEND (J
CALL SEND (KL
CALL SEND (R1
CALL SEND (R2
CALL SEND (J
CALL SEND (KL
CALL SEND (R3
CALL SEND (J
CALL SEND (KL
RR = l./Q(KL,l, J)
CALL SEND (Q
CALL SEND (Q
CALL SEND (Q
CALL SEND (UINF
CALL SEND (VINF
CALL SEND (WINF
U = Q (KL, 2, J) *RR

QS = R4+Rl*U+R2*V+R3*W
CALL SEND (QS
CALL SEND (QS

V =
W =

Q(KL, 3, J) *RR
Q(KL, 4, J) *RR

4)
‘3\ 2”; CALL SEND (Q S

PP = GAMI* (Q(KL,5, J) -.5*Q(KL, 1, J) * (U*U+V*V+W*W))
CALL SEND (PP a \
CALL SEND (PP
CALL SEND (PP
RJ = l./Q(KL,6,J)
QSINFJ = (R4+Rl*UINF+R2*VINF+R3*WINF) *RJ
CALL SEND (QSINFJ a \

CALL SEND (QSINFJ
CALL SEND (QSINFJ
PINFJ = PINF*RJ
CALL SEND (PINFJ
CALL SEND (PINFJ
CALL SEND (PINFJ
FV(5) = (Q(KL,5, J)+PP) *QS-R4*PP
FV(5)
CALL RECV (FV(4)
CALL RECV (FV(3)
CALL RECV (FV(1)
CALL RECV (FV (2)
END

4)
3)
2)

2)
3)
4)
4)

= FV(5) - (EINF+PINF) *QSINFJ+R4*PINFJ

9

9

FILE 2 {Processor

CALL RECV
CALL RECV
CALL RECV
CALL RECV
CALL RECV
CALL RECV (Q
FV(4) = Q (KL, 4, J) *QS+R3*PP
CALL RECV (PINFJ
CALL RECV (QSINFJ
CALL RECV (WINF
FV(4) = FV(4) -WINF*QSINFJ-R3*PINFJ
END
CALL SEND (FV(4)

9

9

FILE 3 {processor 3)

CALL RECV (PP
CALL RECV (R2
CALL RECV (QS
CALL RECV (J
CALL RECV (KL
CALL RECV (Q
FV(3) = Q(KL,3, J) *QS+R2*PP
CALL RECV (PINFJ
CALL RECV (QSINFJ
CALL RECV (VINF
FV(3) = FV(3)-VINF*QSINFJ-R2*PINFJ
CALL SEND (FV(3)
END

9

9

FILE 4 {processor 4)

CALL RECV (QS
CALL RECV (J
CALL RECV (KL
CALL RECV (Q

CALL RECV (PP
CALL RECV (R1
FV(2) = Q(KL,2,J)*QS+Rl*PP
CALL RECV (QSINFJ
FV(1) = FV(1) -QSINFJ
CALL SEND (FV(1)
CALL RECV (PINFJ
CALL RECV (UINF
FV (2)
CALL SEND (FV(2)
END

FV(1) = Q(KL, 1, J) *QS

= FV (2) -UINF*QSINF J-R1 *PINFJ

APPENDIX B. SUBROUTINE 'XXM'

a) Sequential Code

K = M
DY2 = .5/DY1
DZ2 = .5/DZ1
KL = (L-l)*ND+K
KP = KL+1
KR = KL-1
LP = KL+ND
LR = KL-ND
DO 10 J = J1,J2
RJ = Q(KL, 6, J)
IF((K.NE.l) .AND. (K.NE.KM?U)) THEN
XK = (X (KP, J) -X (KR, J)) *DY2
YK = (Y (KP, J) -Y (KR, J)) *DY2
ZK = (Z (KP, J) -Z (KR, J)) *DY2
ELSE IF (K. EQ. 1) THEN
K1 = KL+1
K2 = KL+2
XK = (-3.*X(KLtJ)+4.*X(K1,J)-X(K2,J))*DY2
YK = (-3.*Y(KL,J)+4.*Y(Kl,J)-Y(K2,J))*DY2
ZK = (-3.*Z(KL1J)+4.*Z(K1,J)-Z(K2,J))*DY2
ELSE
K1 = KL-1
K2 = KL-2
XK =

ZK =
ENDIF
IF((L.NE.l) .AND. (L.NE.LMAX))THEN
XL = (X (LP, J) -X (LR, J)) *DZ2
YL = (Y (LP, J) -Y (LR, J)) *DZ2
ZL = (Z (LP, J) -Z (LR, J)) * D Z 2
ELSE IF (L.EQ.l) THEN
L1 = KL+ND
L2 = KL+2*ND
XL = (-3.*X(KLfJ)+4.*X(L1,J)-X(L2,J))*DZ2
YL = (-3.*Y(KLtJ)+4.*Y(L1,J)-Y(L2,J))*DZ2
ZL = (-3.*Z (KL, J) +4.*Z (Ll, J) -Z (L2, J)) *DZ2
ELSE
L1 = KL-ND
L2 = KL-z*ND
XL = (3.*X(KLIJ)-4.*X(L1,J)+X(L2,J))*DZ2
YL = (3.*Y (KL, J) -4.*Y (Ll, J) +Y (L2, J)) *DZ2
ZL = (3.*z(KL,J)-4.*Z(Ll,J)+Z(L2,J))*DZ2
ENDIF
XX(J, 1) = (YK*ZL-ZK*YL) *RJ
XX (J, 2) = (ZK*XL-XK*ZL) *RJ
XX (J, 3) = (XK*YL-YK*XL) *RJ

(3.*X(KL, J)-4.*X(K1, J)+X(K2, J)) *DY2

(3 . *Z (KL, J) -4. *Z (Kl, J) +Z (K2, J)) *DY2
YK = (3. *Y (KL, J) -4 *Y (K1, J) +Y (K2, J)) *DY2

XX (J, 4 1 = -OMEGA* (Z (KL, J) *XX (J, 2) -Y (KL, J) *XX (J, 3))

9

9

10 CONTINUE
RETURN
END

APPENDIX B (continue)

b). Parallel Code

FILE 1 {Processor 1 }

CALL SEND (52
CALL SEND (J1
CALL SEND (J2
CALL SEND (J1
CALL SEND (J2
CALL SEND (J1
CALL SEND (L
CALL SEND (L
CALL SEND (L
K = M
CALL SEND (KMAX
CALL SEND (KMAX
CALL SEND (KMAX
CALL SEND (K
CALL SEND (K
CALL SEND (K
CALL SEND (LMAX
CALL SEND (LMAX
CALL SEND (LMAX
CALL SEND (ND
CALL SEND (ND
CALL SEND (ND
CALL SEND (OMEGA
CALL SEND (OMEGA
CALL SEND (OMEGA
DY2 = .5/DY1
CALL SEND (DY2
CALL SEND (D Y 2
CALL SEND (DY2
DZ2 = .S/DZl
CALL SEND (DZ2
CALL SEND (DZ2
CALL SEND (DZ2
KL = (L-l)*ND+K
CALL SEND (KL
CALL SEND (KL
CALL SEND (KL
KP = KL+1
CALL SEND (KP
CALL SEND (KP
CALL SEND (KP
KR = KL-1
CALL SEND (KR
CALL SEND (KR
CALL SEND (KR
LP = KL+ND

CALL SEND (LP
CALL SEND (LP
CALL SEND (LP
LR = KL-ND
CALL SEND (LR
CALL SEND (LR
CALL SEND (LR
NQQOz(J2- (Jl) +1-0) DIV 4+1
LQQO=Jl
MQQO=MIN (LQQO+ 0 + 1 *NQQO - l,J2)
LZZ=Jl+O+NQQO
MZZ=MIN(LZZ+O+2*NQQO-l,J2)
CALL SEND(Q(KL,*,KZZ)KZZ=LZZ,MZZ,2)
LZZ=J1+0+2*NQQO
MZZ=MIN (LZZ+O+3*NQQO-l, J2)
CALL SEND (Q (KL, *,KZZ) KZZ=LZZ,MZZ, 3)
LZZ=J1+0+3*NQQO
M Z Z = M I N (L Z Z + O + 4 * N Q Q o - 1 , 5 2)
CALL SEND(Q(KL,*,KZZ)KZZ=LZZ,MZZ,4)
LZZ=Jl+O+NQQO
MZZ=MIN(LZZ+O+2*NQQO-l,J2)
CALL SEND (X(*,KZZ)KZZ=LZZ,MZZ,2)
LZZ=J1+0+2*NQQO
MZ Z=MIN (LZ Z + 0 + 3 *NQQO - 1,J2)
CALL SEND (X(*,KZZ)KZZ=LZZ,MZZ,3)
LZZ=J1+0+3*NQQO
MZZ=MIN(LZZ+O+4*NQQO-l,J2)
CALL SEND (X(*,KZZ) KZZ=LZZ,MZZ, 4)
LZZ=Jl+O+NQQO
MZZ=MIN(LZZ+O+2*NQQO-l,J2)
CALL SEND (Y (*, KZZ) KZZ=LZZ, MZZ, 2)
LZZ=J1+0+2*NQQO
MZZ=MIN(LZZ+0+3*NQQO-l,J2)
CALL SEND (Y (* , KZZ) KZZ=LZZ , MZZ, 3)
.LZZ=J1+0+3*NQQO
M Z Z = M I N (L Z Z + 0 + 4 * N Q Q O - 1 , 5 2)
CALL SEND(Y (*,KZZ)KZZ=LZZ,MZZ,4)
LZZ=Jl+O+NQQO
MZZ=MIN(LZZ+O+2*NQQO-l,J2)
CALL SEND(Z(*,KZZ)KZZ=LZZ,MZZ,2) .
LZZ=J1+0+2*NQQO
MZZ=MIN(LZZ+o+3*NQQo-l,J2)
CALL SEND(Z(*,KZZ)KZZ=LZZ,MZZ,3)
LZZ=J1+0+3*NQQO
MZZ=MIN (LZZ+0+4*NQQO-lI J2)
CALL SEND(Z(*,KZZ)KZZ=LZZ,MZZ,4)
DO 10 J=LQQO,MQQO
RJ = Q(KL, 6, J)
IF((K.NE.l) .AND. (K.NE.KMAX)) THEN
XK = (X (KP, J) -X (KR, J)) *DY2
YK = (Y (KP, J) -Y (KR, J)) *DY2
ZK = (Z (KP, J) -Z (KR, J)) *DY2
ELSE IF(K.EQ.l) THEN

K1 = KL+1
K2 = KL+2
XK = (-3.*X(KLrJ)+4.*X(K1,J)-X(K2,J))*DY2
YK = (-3.*Y(KLtJ)+4.*Y(K1,J)-Y(K2,J))*DY2 ’

ZK = (- 3 . *Z (KL, J) +4. *Z (Kl, J) -Z (K2, J)) *DYZ
ELSE
K1 = KL-1
K2 = KL-2
XK = (3.*X(KLrJ)-4.*X(K1,J)+X(K2,J))*DY2
YK = (3.*Y(KL,J)-4.*Y(Kl,J)+Y(KZ,J))*DY2
ZK = (3 . *Z (KL, J) - 4 . *Z (Kl, J) +Z (K2, J)) *DY2
ENDIF
IF((L.NE.l) .AND. (L.NE.LMAX))THEN
XL = (X (LP, J) -X (LR, J)) *DZ2
YL = (Y (LP, J) -Y (LR, J)) *DZ2
ZL = (Z (LP, J) -Z (LR, J)) *DZ2
ELSE IF(L.EQ.l) THEN
L1 = KL+ND
L2 = KL+2*ND
XL = (-3.*X(KL,J)+4.*X(Ll,J)-X(L2,J))*DZ2
YL = (-3.*Y (KL, J) +4.*Y (Ll, J) -Y (L2, J)) *DZZ
ZL = (-3.*Z(KL,J)+4.*Z(LlIJ)-Z(L2,J))*DZ2
ELSE
L1 = KL-ND
L2 = KL-Z*ND
XL = (3 . *X (KL, J) - 4 . *X (Ll, J) +X (L2, J)) *DZ2
YL = (3.*Y(KL,J)-4.*Y(Ll,J)+Y(LZ,J))*DZZ
ZL = (3.*Z(KL,J)-4.*Z(Ll,J)+Z(L2,J))*DZ2
ENDIF
XX (J, 1) (YK*ZL-ZK*YL) *RJ
XX (J, 2) = (ZK*XL-XK*ZL) *RJ
XX (J, 3) = (XK*YL-YK*XL) *RJ
XX (J, 4) = -OMEGA* (Z (KL, J) *XX (J, 2) -Y (KL, J) *XX (J, 3))

c 10 CONTINUE

CALL RECV (J 1)
CALL RECV (RJ 1)
CALL. RECV (XK . 1)
CALL RECV (YK 1)
CALL RECV (ZK 1)
CALL RECV (K1 1)
CALL RECV (K2 1)
CALL RECV (XL 1)
CALL RECV (YL 1)
CALL RECV (ZL 1)
CALL RECV (L1 1)
CALL RECV (L2 1)
KQQ=J2
LZZ=Jl+O+NQQO
MZZ=MIN(LZZ+O+2*NQQO-l,J2)
CALL RECV (XX (KZZ, *) KZZ=LZZ,MZZ, 2) ’
LZZ=Jl+O+Z*NQQO
MZ Z=MIN (LZ Z+ 0 + 3 *NQQO - 1,J2)

9

9

CALL RECV (XX(KZZ, *)KZZ=LZZ,MZZ,3)
LZZ=J1+0+3*NQQO
MZZ=MIN(LZZ+o+4*NQQO-l,J2)
CALL RECV (XX(KZZ, *)KZZ=LZZ,MZZ,4)
END

I FILE 2 {Processor 2)
CALL RECV (J2
CALL RECV (J1
NQQO=(J2- (J1) +1-0) DIV 4+1
LQQO=Jl+O+NQQO
MQQO=MIN(LQQO+O+2*NQQO-l,J2)
DO 10 J=LQQO, MQQO
IF (J .EQ. LQQO) THEN
CALL RECV (KL

CALL RECV(Q(KL, *,KZZ)KZZ=LQQO,MQQO,l)
ENDIF
RJ = Q(KL,6,J)
IF (J .EQ. LQQO) THEN
CALL RECV (KMAX
CALL RECV (K

ENDIF
IF((K.NE.l) .AND. (K.NE.KMAX)) THEN
IF (J .EQ. LQQO) THEN
CALL RECV (DY2
CALL RECV (KR

CALL RECV (KP

c

c

c .----------------------------

CALL RECV (X (*, KZZ) KZZ=LQQO, MQQO, 1)
ENDIF
XK = (X (KP, J) -X (KR, J)) *DY2
IF (J .EQ. LQQO) THEN

CALL RECV(Y (*,KZZ)KZZ=LQQO,MQQO, 1)
ENDIF
YK = (Y (KP, J) -Y (KR, J)) *DY2
IF (J .EQ. LQQO) THEN

CALL RECV(Z (*,KZZ)KZZ=LQQO,MQQO, 1)
ENDIF
ZK = (Z (KP, J) -Z (KR, J)) *DY2
ELSE IF (K.EQ. 1) THEN
K1 = KLt1
K2 = KL+2
XK = (-3.*X(KL,J)+4.*X(Kl,J)-X(K2,J))*DY2
YK = (- 3 . *Y (KL, J) +4. *Y (K1, J) -Y (K2, J)) *DY2
ZK = (-3.*Z(KL,J)+4.*Z(Kl,J)-Z(K2,J))*DYz
ELSE
K1 = KL-1
K2 = KL-2
XK =
YK =
ZK =
ENDIF
IF (J .EQ. LQQO) THEN
CALL RECV (LMAX 1)

c

c

(3 . *X (KL, J) -4. *X (K1, J) +X (K2, J)) *DY2
(3 . *Y (KL, J) -4. *Y (Kl, J) +Y (K2, J)) *DY2
(3.*Z (KL, J) -4 .*Z (Kl, J) +Z (K2, J)) *DY2

I CALL RECV (L 1) c
ENDIF
IF((L.NE.l) .AND. (L.NE.LMAX))THEN
IF (J .EQ. LQQO) THEN
CALL RECV (DZ2 1)
CALL RECV (LR 1)
CALL RECV (LP 1)

ENDIF
XL = (X (LP, J) -X (LR, J)) *DZ2
YL = (Y (LP, J) -Y (LR, J)) *DZ2
ZL = (Z (LP, J) -Z (LR, J)) *DZ2
ELSE IF(L.EQ.l) THEN
IF (J .EQ. LQQO) THEN

c

CALL RECV (ND 1) c
ENDIF
L1 = KL+ND
L2 = KL+2*ND
XL = (-3.*X(KL,J)+4.*X(LltJ)-X(L2,J))*DZ2
YL = (-3.*Y(KL,J)+4.*Y(Ll,J)-Y(LZ,J))*DZ2
ZL = (-3.*Z(KL,J)+4.*Z(Ll,J)-Z(LZ,J))*DZ2
ELSE
L1 = KL-ND
L2 = KL-2*ND
XL = (3 . *X (KL, J) - 4 . *X (Ll, J) +X (L2, J).) *DZ2
YL = (3.*Y(KLIJ)-4.*Y(L1,J)+Y(L2,J))*DZ2

ENDIF
XX(J, 1) = (YK*ZL-ZK*YL) *RJ
XX (J, 2) = (ZK*XL-XK*ZL) *RJ
XX (J, 3) = (XK*YL-YK*XL) *RJ
IF (J .EQ. LQQO) THEN

ZL = (3 . *Z (KL, J) -4. *Z (L1, J) +Z (L2, J).) *DZZ

CALL RECV (OMEGA 1)

ENDIF
XX (J, 4)

10 CONTINUE
KQQ= J2
IF (J .EQ. KQQ) THEN

c
= -OMEGA* (Z (KL, J) *XX (J, 2) -Y (KL, J) *XX (J, 3))

CALL SEND (J 1)
CALL SEND (RJ 1)
CALL SEND (XK 1)
CALL SEND (YK 1)
CALL SEND (ZK 1)
CALL SEND (K1 1)
CALL SEND (K2 1)
CALL SEND (XL 1)
CALL SEND (YL 1)
CALL SEND (ZL 1)
CALL SEND (L1 1)
CALL SEND (L2 1)

ENDIF

CALL SEND (XX (KZZ, *) KZZ=LQQO,MQQO, 1)
END

c

9

9

FILE 3 {Processor 3)

CALL RECV (52 1)
CALL RECV (J1 1)
NQQO=(J2-(J1)+1-0) DIV 4t1
LQQO=J1+0+2*NQQO
MQQO=MIN(LQQO+O+3*NQQO-l,J2)
DO 10 J=LQQO,MQQO
IF (J .EQ. LQQO) THEN
CALL RECV (KL 1) c
CALL RECV(Q(KL, *,KZZ)KZZ=LQQO,MQQO,l)
ENDIF
RJ = Q(KL,6,J)
IF (J .EQ. LQQO) THEN
CALL RECV (KMAX 1)
CALL RECV (K 1) c
ENDIF
IF((K.NE.l) .AND. (K.NE.KMAX)) THEN
IF (J .EQ. LQQO) THEN
CALL RECV (DY2 1)
CALL RECV (KR 1)

CALL RECV (KP 1)
CALL RECV (X (*, KZZ) KZZ=LQQO, MQQO, 1)
ENDIF
XK = (X (KP, J) -X (KR, J)) *DY2
IF (J .EQ. LQQO) THEN

CALL RECV(Y (*,KZZ)KZZ=LQQO,MQQO, 1)
ENDIF
YK = (Y (KP, J) -Y (KR, J)) *DY2
IF (J .EQ. LQQO) THEN

CALL RECV(Z (*,KZZ)KZZ=LQQO,MQQO,l)
ENDIF
ZK = (Z (KP, J) -Z (KR, J)) *DY2
ELSE IF(K.EQ.1) THEN
K1 = KL+1
K2 = KL+2
XK = (-3.*X(KL,J)+4.*X(Kl,J)-X(K2,J))*DY2
YK = (-3.*Y(KL,J)+4.*Y(Kl8J)-Y(K2,J))*DY2
ZK = (-3.*Z (KL, J) +4.*Z (Kl, J) -Z (K2, J)) *DY2
ELSE
K1 = KL-1
K2 = KL-2
XK = (3.*X(KL,J)-4.*X(Kl,J)tX(KZ,J))*DYZ
YK = (3.*Y (KL, J) -4.*Y (Kl, J) +Y (K2, J)) *DY2
ZK = (3. *Z (KL, J) -4. *Z (Kl, J) +Z (K2, J)) *DY2
ENDIF
IF (J .EQ. LQQO) THEN
CALL RECV (LMAX 1)

c

c

c

CALL RECV (L 1)

ENDIF
IF((L.NE.l) .AND. (L.NE.LMAX))THEN
IF (J .EQ. LQQO) THEN

c

CALL RECV (DZ2 1)
CALL RECV (LR 1)
CALL RECV (LP 1) * c
ENDIF
XL = (X (LP, J) -X (LR, J)) *DZ2
YL = (Y (LP, J) -Y (LR, J)) *DZ2
ZL = (Z (LP, J) -Z (LR, J)) *DZ2
ELSE IF(L.EQ.l) THEN
IF (J .EQ. LQQO) THEN
CALL RECV (ND 1) c
ENDIF
L1 = KL+ND
L2 = KL+2*ND
XL = (-3. *X (KL, J) +4. *X (Ll, J) -X (L2, J)) *DZ2
YL = (-3.*Y(KLtJ)+4.*Y(Ll,J)-Y(L2,J))*DZ2
ZL = (-3.*Z(KLtJ)+4.*Z(L1,J)-Z(L2,J))*DZ2
ELSE
L1 = KL-ND
L2 = KL-z*ND
XL = (3.*X(KL,J)-4.*X(Ll,J)+X(L2,J))*DZ2
YL = (3. *Y (KL, J) -4. *Y (Ll, J) +Y (L2, J)) *DZ2
ZL = (3.*Z (KL, J) -4 . *Z (Ll, J) +Z (L2, J)) *DZ2
ENDIF
XX (J, 1) = (YK*ZL-ZK*YL) *RJ
XX (J, 2) = (ZK*XL-XK*ZL) *RJ
XX (J, 3) = (XK*YL-YK*XL) *RJ
IF (J .EQ. LQQO) THEN
CALL RECV (OMEGA 1) c
ENDIF
XX(J,4) = -OMEGA*(Z(KL,J) *XX(J,2)-Y(KL,J)*XX(J,3))

10 CONTINUE
KQQ=J2
IF (J .EQ. KQQ) THEN
CALL SEND (J
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND

9

9

FILE 4 {Processor 4)

CALL RECV (J2
CALL RECV (J1
NQQo= (52- (J1) +1-0) DIV 4+1
LQQO=J1+0+3*NQQO
MQQO=J2
DO 10 J=LQQO,MQQO
IF (J .EQ. LQQO) THEN
CALL RECV (KL

CALL RECV(Q(KL,*,KZZ)KZZ=LQQO
_________________--------

MQQO
ENDIF
RJ = Q(KL, 6, J)
IF (J .EQ. LQQO) THEN
CALL RECV (K m
CALL RECV (K

ENDIF
IF((K.NE.l) .AND. (K.NE.KMAX)) THEN
IF (J .EQ. LQQO) THEN
CALL RECV (DY2
CALL RECV (KR

c __________________----------

fl ____________________--_-----
L -

CALL RECV (KP
CALL RECV(X(*,KZZ)KZZ=LQQO,MQQO,l) '

ENDIF
XK = (X (KP, J) -X (KR, J)) *DY2
IF (J .EQ. LQQO) THEN c ____________________-_------
CALL RECV (Y (*I KZZ) KZZ=LQQO,MQQO, 1)
ENDIF
YK = (Y (KP, J) -Y (KR, J)) *DY2
IF (J .EQ. LQQO) THEN c __________________-_--------
CALL RECV (Z (*I KZZ) KZZ=LQQO,MQQO, 1)
ENDIF
ZK = (Z (KP, J) -Z (KR, J)) *DY2
ELSE IF (K.EQ.l) THEN

ELSE
K1 = KL-1
K2 = KL-2
XK = (3.*X(KL,J)-4.*X(Kl,J)+X(K2,J))*DY2
YK = (3.*Y(KL,J)-4.*Y(Kl,J)+Y(K2,J))*DY2
ZK = (3. *Z (KL, J) -4. *Z (Kl, J) +Z (K2, J)) *DY2
ENDIF
IF (J .EQ. LQQO) THEN
CALL RECV (LMAX

CALL RECV (L

ENDIF
IF((L.NE.l) .AND. (L.NE.LMAX))THEN
IF (J .EQ. LQQO) THEN
CALL RECV (DZ2
CALL RECV (LR
CALL RECV (LP

ENDIF

YL = (Y (LP, J) -Y (LR, J)) *DZ2
ZL = (Z (LP, J) -Z (LR, J)) *DZ2
ELSE IF(L.EQ.l) THEN
IF (J .EQ. LQQO) THEN
CALL RECV (ND

ENDIF
L1 = KL+ND
L2 = KL+2*ND
XL = (-3. *X (KL, J) +4 . *X (L1 , J) -X (L2, J)) *DZ2
YL = (-3.*Y (KL, J) +4.*Y (Ll, J) -Y (L2, J)) *DZ2
ZL = (-3.*Z(KL,J)+4.*Z(Ll,J)-Z(L2,J))*DZ2
ELSE
L1 = KL-ND
L2 KL-2*ND
XL = (3. *X (KL, J) -4. *X (Ll, J) +X (L2, J)) *DZ2
YL = (3.*Y(KL,J)-4.*Y(Ll,J)+Y(L2,J))*DZ2
ZL = (3. *Z (KL, J) -4. *Z (Ll, J) +Z (L2, J)) *DZ2
ENDIF
XX (J, 1) = (YK*ZL-ZK*YL) *RJ
XX (J, 2) = (ZK*XL-XK*ZL) *RJ
XX (J, 3) = (XK*YL-YK*XL) *RJ
IF (J .EQ. LQQO) THEN

c ________--_-----------------

c
XL = (X (LP, J) -X (LR, J)) *DZ2

c

CALL RECV (OMEGA 1) c
ENDIF
XX (J, 4) = -OMEGA* (Z (KL, J) *XX (J, 2) -Y (KL, J) *XX (J, 3))

io CONTINUE
KQQ=J2
IF (J .EQ. KQQ) THEN
CALL SEND (J 1)
CALL SEND (RJ 1)
CALL SEND (XK 1)
CALL SEND (YK 1)
CALL SEND (ZK 1)
CALL SEND (K1 1)
CALL SEND (K2 1)
CALL SEND (XL 1)
CALL SEND (YL 1)
CALL SEND (ZL 1)
CALL SEND (L1 1)
CALL SEND (L2 1)

CALL SEND (XX(KZZ, *) KZZ=LQQO,MQQO, 1)
END

9

9

APPENDIX C. SUBROUTINE 'YYM'

a). Sequential Codes

9

9

RETURN
END

APPENDIX c (con t inue)

I b). Parallel Code

I FILE 1 {processor 1)

CALL SEND (K2
CALL SEND (K1
CALL SEND (K2
CALL SEND (K1
CALL SEND (K2
CALL SEND (K1
CALL SEND (L
CALL SEND (L
CALL SEND (L
CALL SEND (J
CALL SEND (J
CALL SEND (J
DX2 = .5/DX1
CALL SEND (ND
CALL SEND (ND
CALL SEND (ND
CALL SEND (JMAX
CALL SEND (JMAX
CALL SEND (JMAX
CALL SEND (DX2
CALL SEND (DX2
CALL SEND (DX2
CALL SEND (LMAX
CALL SEND (LMAX
CALL SEND (LMAX
CALL SEND (OMEGA
CALL SEND (OMEGA
CALL SEND (OMEGA
DZ2 = .5/DZ1
CALL SEND (D Z 2
CALL SEND (DZ2
CALL SEND (DZ2
JP = J+1
CALL SEND (JP
CALL SEND (JP
CALL SEND (JP
JR = J-1
CALL SEND (JR
CALL SEND (JR
CALL SEND (JR
NQQO=(K2- (Kl) +1-0) DIV 4+1
LQQO=Kl
MQQO=MIN(LQQO+O+l*NQQO-l,K2)
LZZ=Kl+O+NQQO
MZZ=MIN (LZZ+0+2*NQQO-l,K2)
CALL SEND(Q(*,*,J)KZZ=LZZ,MZZ,2)
LZZ=K1+0+2*NQQO

MZZ=MIN (LZZ+0+3*NQQO-1, K2)
CALL SEND(Q(*,*, J)KZZ=LZZ,MZZ,3)
LZZ=K1+0+3*NQQO
MZZ=MIN (LZZ+0+4*NQQO-1, K2)
CALL SEND (Q (*, * , J) KZZ=LZZ, MZZ, 4)
LZZ=Kl+O+NQQO
MZZ=MIN (LZZ+O+2 *NQQO-l, K2)
CALL SEND(X(*,*)KZZ=LZZ,MZZ,2)
LZZ=K1+0+2*NQQO
MZZ=MIN (LZZ+0+3*NQQO-1, K2)
CALL SEND (X (*, *) KZZ=LZZ, MZZ, 3)
LZZ=K1+0+3*NQQO
MZZ=MIN(LZZ+O+4*NQQO-l,K2)
CALL SEND(X(*,*)KZZ=LZZ,MZZ,4)
LZZ=Kl+O+NQQO
MZZ=MIN (LZZ+O+2 *NQQO-l, K2)
CALL SEND(Y(*,*)KZZ=LZZ,MZZ,2)
LZZ=K1+0+2*NQQO
MZZ=MIN (LZZ+O +3 *NQQO - 1, K2)
CALL SEND(Y(*,*)KZZ=LZZ,MZZ,3)
LZZ=K1+0+3*NQQO
MZZ=MIN(LZZ+0+4*NQQo-l,K2)
CALL SEND(Y(*,*)KZZ=LZZ,MZZ,4)
LZZ=Kl+O+NQQO
MZZ=MIN (LZZ+0+2*NQQO-1, K2)
CALL SEND(Z(*,*)KZZ=LZZ,MZZ,2)
LZZ=K1+0+2*NQQO
MZZ=MIN (LZZ+0+3*NQQO-I,K2)
CALL SEND(Z(*,*)KZZ=LZZ,MZZ,3)
LZZ=K1+0+3*NQQO
MZZ=MIN (LZZ+O+4*NQQO-l, K2)
CALL SEND(Z(*,*)KZZ=LZZ,MZZ,4)
DO 10 K=LQQO,MQQO
KL = (L-l)*ND+K
LP = KL+ND
LR = KL-ND
RJ = Q(KL,6,J)
IF((J.NE.l) .AND. (J.EQ.JMAX)) THEN
XJ = (X (KL, JP) -X (KL, JR)) *DX2
YJ = (Y (KL, JP) -Y (KL, JR)) *DX2
ZJ = (Z (KL, JP) -Z (KL, JR)) *DX2
ELSE IF(J.EQ.l) THEN
J1 = J+l
J2 = J+2
XJ =
YJ =
ZJ =
ELSE IF (J. EQ. JMAX) THEN
J1 = J-1
52 = 5-2
XJ = (3. *X (KL, J) -4. *X (KL, J1) +X (KL, J2)) *DX2
YJ = (3. *Y (KL, J) -4. *Y (KL, J1) +Y (KL, 52)) *DX2
ZJ = (3.*Z(KL,J)-4.*z(KL,Jl)+Z(KL,J2))*DX2

(-3. *X (KL, J) +4. *X (KL, J1) -X (KL, J2)) *DX2
(-3. *Y (KL, J) +4. *Y (KL, J1) -Y (KL, J2)) *DX2
(-3. *Z (KL, J) +4. *Z (KL, J1) -Z (KL, J2)) *DX2

ENDIF
IF((L.NE.l) .AND. (L.EQ.LMAX)) THEN
XL = (X (LP, J) -X (LR, J)) *DZ2
YL = (Y (LP, J) -Y (LR, J)) *DZ2
ZL = (Z (LP, J) -Z (LR, J)) *DZ2
ELSE IF(L.EQ.l) THEN
L1 = KL+ND
L2 = KL+2*ND
XL = (-3.*X(KL, J)+4.*X(Ll,J)-X(LZ!,J))*DZ2
YL = (-3.*Y (KL, J)+4.*Y (Ll, J) -Y (L2, J)) *DZ2
ZL = (-3.*Z(KL,J)+4.*Z(Ll,J)-Z(L2,J))*DZ2
ELSE IF (L. EQ. LMAX) THEN
L1 = KL-ND
L2 = KL-2*ND
XL = (3.*X(KL, J) -4. *X(L1, J) +X(L2, J)) *DZ2
YL = (3.*Y(KL,J)-4.*Y(Ll,J)+Y(Lz,J))*DZ2
ZL = (3,*z(KL,J)-4.*Z(Ll,J)+Z(L2,J))*DZ2
ENDIF
YY (K, 1) = (ZJ*YL-YJ*ZL) *RJ'
YY (K, 2) = (XJ*ZL-XL*ZJ) *RJ
YY (K, 3) = (YJ*XL-XJ*YL) *RJ
YY (K, 4) =

c
-OMEGA* (Z (KL, J) *YY (K, 2) -Y (KL, J) *YY (K, 3))

10 CONTINUE

CALL RECV (K 1)
CALL RECV (KL 1)
CALL RECV (LP 1)
CALL RECV (LR 1)
CALL RECV (RJ 1)
CALL RECV (XJ 1)
CALL RECV (YJ 1)
CALL RECV (ZJ 1)
CALL RECV (J1 1)
CALL RECV (J2 1)
CALL RECV (XL 1)
CALL RECV (YL 1)
CALL RECV (ZL 1)
CALL, RECV (L1 1)
CALL RECV (L2 1)
KQQ=K2
LZZ=Kl+O+NQQO
MZZ=MIN(LZZ+0+2*NQQO-l,K2)
CALL RECV (YY (KZZ, *) KZZ=LZZ,MZZ, 2)
LZZ=K1+0+2*NQQO
MZZ=MIN (LZZ+0+3*NQQO-l, K2)
CALL RECV (YY (KZZ, *) KZZ=LZZ,MZZ, 3)
LZZ=K1+0+3*NQQO
MZZ=MIN(LZZ+O+4*NQQO-l,K2)
CALL RECV (YY (KZZ, *) KZZ=LZZ,MZZ, 4)
END

9

9

FILE 2 {Processor 2)

C

C

C

C

C

CALL RECV (K2
CALL RECV (K1
NQQO=(K2- (K1) +1-0) DIV 4+1
LQQO=Kl+O+NQQO
MQQO=MIN (LQQ0+0+2 *NQQO - 1, K2)
DO 10 K=LQQO,MQQO
IF (K .EQ. LQQO) THEN
CALL RECV (ND
CALL RECV (L

ENDIF
KL = (L-l)*ND+K
LP = KL+ND
LR = KL-ND
IF (K .EQ. LQQO) THEN
CALL RECV (J

CALL RECV (Q (*, *, J) KZZ=LQQO, MQQO, 1)
ENDIF
RJ = Q (KL, 6, J)
IF (K .EQ. LQQO) THEN

............................

............................

CALL RECV (JMAX 1)
ENDIF
IF((J.NE.l) .AND. (J.EQ.JMAX)) THEN
IF (K .EQ. LQQO) THEN
CALL RECV (DX2 1)
CALL RECV (JR 1)
CALL RECV (JP 1)
CALL RECV (X (* , *) KZZ=LQQO , MQQO ,1)
ENDIF
XJ = (X (KL, JP) -X (KL, JR)) *DX2
IF (K .EQ. LQQO) THEN

CALL RECV(Y(*,*)KZZ=LQQO,MQQO,l)
ENDIF
YJ = (Y (KL, JP) -Y (KL, JR)) *DX2
IF (K .EQ. LQQO) THEN

CALL RECV(Z(*,*)KZZ=LQQO,MQQO,l)
ENDIF
ZJ = (Z (KL, JP) -Z (KL, JR)) *DX2
ELSE IF(J.EQ.l) THEN
J1 = J+1
J2 = J+2
XJ =
YJ =
ZJ =
ELSE IF(J.EQ.JMAX) THEN
J1 = J-1

............................

............................

(-3. *X (KL, J) +4. *X (KL, J1) -X (KL, J2)) *DX2
(-3. *Y (KL, J) +4. *Y (KL, J1) -Y (KL, 52)) *DX2
(-3.*Z (KL, J) +4.*Z (KL, J1) -Z (KL, 52)) *DX2

XJ = (3. *X (KL, J) -4. *X (KL, J1) +X (KL, J2)) *DX2
YJ = (3. *Y (KL, J) -4. *Y (KL, J1) +Y (KL, J2)) *DX2
ZJ = (3. *Z (KL, J) -4. *Z (KL, J1) +Z (KL, 52)) *DX2 .
ENDIF
IF (K .EQ. LQQO) THEN
CALL RECV (LMAX

IF ((L.NE.l) .AND. (L.EQ.LMAX)) THEN
IF (K .EQ. LQQO) THEN
CALL RECV (DZ2

XL = (X (LP, J) -X (LR, J)) *DZ2

(Z (LP, J) -Z (LR, J)) *DZ2
YL =

ELSE IF (L. EQ. 1)
L1 = KL+ND

(Y (LP, J) -Y (LR, J)) *DZ2
ZL =

THEN

LZ = KL+Z*ND
XL = (-3;*X?KL, J) +4. *X(Ll, J) -X(L2, J)) *DZ2
YL = (- 3 . *Y (KL, J) +4. *Y (L1, J) -Y (L2, J)) *DZ2
ZL = (-3.*Z(KL,J)+4.*Z(LI,J)-Z(LZ,J))*DZ2
ELSE IF (L. EQ . LMAX) THEN
L1 = KL-ND
L2 = KL-Z*ND
XL = (3 . *X-(KL, J) -4. *X (Ll, J) +X (L2, J)) *DZ2
YL = (3.*Y (KL, J) -4.*Y (L1, J) +Y (L2, J)) *DZ2
ZL = (3.*Z (KL, J) -4.*Z (L1, J) +Z (L2, J)) *DZ2
ENDIF
YY (K, 1) = (ZJ*YL-YJ*ZL) *RJ
YY (K, 2) = (XJ*ZL-XL*ZJ) *RJ
YY (K, 3) = (YJ*XL-XJ*YL) *RJ
IF (K .EQ. LQQO) THEN
CALL RECV (OMEGA

ENDIF
------------ -------------
YY (K, 4)
CONTINUE

= -OMEGA* (Z (KL, J) *Y

KQQ=K2
IF (K .EQ. KQQ) THEN
CALL SEND (K
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND

CALL SEND (ZL
CALL SEND (L1
CALL SEND (L2
ENDIF

CALL SEND (YY (KZZ, *) KZZ=LQQO,MQQO, 1)
END

c

9

9

FILE 3 {Processo r 3 1

CALL RECV (K2
CALL RECV (K1
NQQO= (K2- (K1) +1-0) DIV 4+1
LQQO=K1+0+2*NQQO
MQQO=MIN(LQQ0+0+3*NQQO-l,K2)
DO 10 K=LQQO,MQQO
IF (K .EQ. LQQO) THEN
CALL RECV (ND
CALL RECV (L

ENDIF
KL = (L-l)*ND+K
LP = KL+ND
LR = KL-ND
IF (K .EQ. LQQO) THEN
CALL RECV (J

CALL RECV(Q(*,*, J)KZZ=LQQO,MQQO,l) '
ENDIF
RJ = Q(KL,6,J)
IF (K .EQ. LQQO) THEN
CALL RECV (JMAX

ENDIF
IF((J.NE.l) .AND. (J.EQ.JMAX)) THEN
IF (K .EQ. LQQO) THEN
CALL RECV (DX2
CALL RECV (JR

CALL RECV (JP
CALL RECV (X (*, *) KZZ=LQQO, MQQO, 1)
ENDIF
XJ = (X (KL, JP) -X (KL, JR)) *DX2
IF (K .EQ. LQQO) THEN

CALL RECV(Y (*, *)KZZ=LQQO,MQQO, 1)
ENDIF
YJ = (Y (KL, JP) -Y (KL, JR)) *DX2
IF (K .EQ. LQQO) THEN

CALL RECV(Z(*,*)KZZ=LQQO,MQQO,l)
ENDIF
ZJ = (Z (KL, JP) -Z (KL, JR)) *DX2
ELSE IF(J.EQ.l) THEN
J1 = J+1
J2 = J+2
XJ =
YJ =
ZJ =
ELSE IF(J.EQ.JMAX) THEN
J1 = J-1

c

c

c

c

c

c

(-3. *X (KL, J) +4. *X (KL, J1) -X (KL, J2)) *DX2
(- 3 . *Y (KL, J) +4. *Y (KL, J1) -Y (KL, J2)) *DX2
(-3.*Z (KL, J) +4.*Z (KL, J1) -Z (KL, J2)) *DX2

CALL SEND (ZL
CALL SEND (L1
CALL SEND (L2
ENDIF

CALL SEND (YY (KZZ, *) KZZ=LQQO,MQQO, 1)
END

c

9

9

FILE 4 {Processor 4)

CALL RECV (K2
CALL RECV (K1
NQQO=(K2- (Kl) +1-0) DIV 4+1
LQQO=K1+0+3*NQQO
MQQO=K2
DO 10 K=LQQO,MQQO
IF (K .EQ. LQQO) THEN
CALL RECV (ND
CALL RECV (L

ENDIF
KL = (L-l)*ND+K
LP = KL+ND
LR = KL-ND
IF (K .EQ. LQQO) THEN
CALL RECV (J

c

1) c
CALL RECV(Q (*, *, J) KZZ=LQQO,MQQO, 1)
ENDIF
RJ = Q(KL, 6, J)
IF (K .EQ. LQQO) THEN
CALL RECV (JMAX 1) c
ENDIF
IF((J.NE.l) .AND. (J.EQ.JMAX)) THEN
IF (K .EQ. LQQO) THEN
CALL RECV (DX2 1)
CALL RECV (JR 1)

CALL RECV (JP 1)
CALL RECV(X(*,*)KZZ=LQQO,MQQO,l)
ENDIF
XJ = (X (KL, JP) -X (KL, JR)) *DX2
IF (K .EQ. LQQO) THEN

CALL RECV(Y (*,*)KZZ=LQQO,MQQO,l)
ENDIF
YJ = (Y (KL, JP) -Y (KL, JR)) *DX2
IF (K .EQ. LQQO) THEN

CALL RECV(Z(*,*)KZZ=LQQO,MQQO,l)
ENDIF
ZJ = (Z (KL, JP) -Z (KL, JR)) *DX2
ELSE IF(J.EQ.l) THEN
J1 = J+l
J2 = J+2
XJ =
Y J =
ZJ =
ELSE IF (J. EQ. JMAX) THEN
J1 = J-1

c

c

c

(- 3 . *X (KL, J) +4. *X (KL, J1) -X (KL, J2)) *DX2
(- 3 . *Y (KL, J) + 4 . *Y (KL, J1) -Y (KL, J2)) *DX2
(- 3 . *Z (KL, J) + 4 . *Z (KL, J1) -Z (KL, J2)) *DX2

J2 = 5-2
XJ =
Y J =
ZJ =
ENDIF
IF (K .EQ. LQQO) THEN
CALL RECV (LMAX

ENDIF
IF ((L.NE.l) .AND. (L.EQ.LMAX))
IF (K .EQ. LQQO) THEN

(3 . *X (KL, J) -4. *X (KL, J1) +X (KL, 52)) *DX2
(3 . *Y (KL, J) -4. *Y (KL, J1) +Y (KL, 52)) *DX2
(3 . * Z (KL, J) - 4 . * Z (KL, J1) +Z (KL, 52)) *DX2

1) c
THEN

CALL RECV (DZ2 1) c
ENDIF
XL = (X (LP, J) -X (LR, J)) *DZ2
YL = (Y (LP, J) -Y (LR, J)) *DZ2
ZL = (Z (LP, J) -Z (LR, J)) *DZ2
ELSE IF(L.EQ.l) THEN
L1 = KL+ND
L2 = KL+2*ND
XL = (-3.*X(KL,J)+4.*X(Ll,J)-X(L2,J))*DZ2
YL = (-3.*Y (KL, J) +4.*Y (L1, J) -Y (L2, J)) *DZ2
ZL = (-3.*Z (KL, J) +4.*Z (Ll, J) -2 (L2, J)) *DZ2
ELSE IF (L.EQ.LMAX) THEN
L1 = KL-ND
L2.= KL-2*ND
XL = (3 . *X (KL, J) -4. *X (Ll, J) +X (L2, J)) *DZ2
YL = (3.*Y(KL,J)-4.*Y(Ll,J)+Y(L2,J))*DZ2
ZL = (3.*Z(KL,J)-4.*Z(Ll,J)+Z(L2,J))*DZ2
ENDIF
YY (K, 1) = (ZJ*YL-YJ*ZL) *RJ
YY (K, 2) = (XJ*ZL-XL*ZJ) *RJ
YY (K, 3) = (YJ*XL-XJ*YL) *RJ
IF (K .EQ. LQQO) THEN
CALL RECV (OMEGA 1)

ENDIF
YY (K, 4)

10 CONTINUE

c
= -OMEGA* (2 (KL, J) *YY (K, 2) -Y (KL, J) *YY (K, 3))

KQQ=K2
IF (K .EQ. KQQ) THEN
CALL SEND (K
CALL SEND (KL
CALL SEND (LP
CALL SEND (LR
CALL SEND (RJ
CALL SEND (XJ
CALL SEND (YJ
CALL SEND (ZJ
CALL SEND (J1
CALL SEND (J2
CALL SEND (XL
CALL SEND (YL

CALL SEND (ZL
CALL SEND (L1
CALL SEND (L2
ENDIF c
CALL SEND (YY (KZZ, *) KZZ=LQQO,MQQO, I.)
END

9

9

APPENDIX D. SUBROUTINE 'ZZM'

a). Sequential Code

K = M
DX2 = .5/DX1
DY2 = .5/DY1
JP = J+1
JR = J-1
DO 10 L = L1,L2
KL = (L-l)*ND+K
KP = KL+1
KR = KL-1
RJ = Q(KL, 6, J)
IF((K.NE.l) .AND. (K.NE.KMAX)) THEN
XK = (X (KP, J) -X (KR, J)) *DY2

ZK = (Z (KP, J) - Z (KR, J)) *DY2
ELSE IF (K. EQ. 1) THEN
K1 = KL+1
K2 = KL+2
XK = (-3. *X (KL, J) +4. *X (Kl, J) -X (K2, J)) *DY2
YK = (-3.*Y (KL, J) +4.*Y (K1, J) -Y (K2, J)) *DY2
ZK = (-3.*Z(KLJJ)+4.*Z(K1,J)-Z(K2,J))*DY2
ELSE IF (K.EQ.KMAX) THEN
K1 = KL-1
K2 = KL-2
XK = (3 . *X (KL, J) -4. *X (K1, J) +X (K2, J)) *DY2
YK = (3.*Y(KL,J)-4.*Y(Kl,J)+Y(K2,J))*DY2
ZK = (3.*Z(KL,J)-4.*Z(KltJ)+Z(K2,J))*DY2
ENDIF
IF((J.NE.l) .AND. (J.NE.JMAX)) THEN
XJ = (X (KL, JP) -X (KL, JR)) *DX2
YJ = (Y (KL, JP) -Y (KL, JR)) *DX2
ZJ = (Z (KL, JP) - Z (KL, JR)) *DX2
ELSE IF(J.EQ.l) THEN
J1 = J+l
J2 = J+2
XJ =
YJ =
ZJ =
ELSE IF (J. EQ. JMAX) THEN
J1 = J-1
52 = 5-2
XJ =
Y J =
ZJ =
ENDIF
ZZ (L, 1) = (YJ*ZK-ZJ*YK) *RJ
ZZ (L,2) = (XK*ZJ-XJ*ZK) *RJ
ZZ (L, 3) = (XJ*YK-YJ*XK) *RJ
ZZ (L, 4)

YK = (Y (KP, J) -Y (KR, J)) *DY2

(- 3 . *X (KL, J) +4. *X (KL, J1) -X (KL, J2)) *DX2
(-3. *Y (KL, J) +4. *Y (KL, J1) -Y (KL, J2)) *DX2
(- 3 . *Z (KL, J) +4. *Z (KL, Jl) -Z (KL, 52)) "DX2

(3. *X (KL, J) - 4 . *X (KL, J1) +X (KL, J2)) *DX2
(3. *Y (KL, J) - 4 . *Y (KL, J1) +Y (KL, J2)) *DX2
(3. *Z (KL, J) -4. *Z (KL, J1) tZ (KL, 52)) *DX2

= -OMEGA* (Z (KL, J) *ZZ (L, 2) -Y (KL, J) *ZZ (L, 3))

10 CONTINUE
RETURN
END

9

APPENDIX D. (continue)

b). Parallel Code

FILE 1

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND
SEND

K = M
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND
CALL SEND

{Processor 1)

DX2 = .5/DX1
CALL SEND (DX2
CALL SEND (DX2
CALL SEND (DX2
DY2 = .5/DY1
CALL SEND (DY2
CALL SEND (DY2
CALL SEND (DY2
JP = J+1
CALL SEND (JP
CALL SEND (JP
CALL SEND (JP
JR = J-1
CALL SEND (JR
CALL SEND (JR
CALL SEND (JR
NQQO=(L2- (Ll) +1-0) DIV 4+1
LQQO=Ll
MQQO=MIN (LQQO+O+l *NQQO- 1, L2)
LZZ=Ll+O+NQQO
MZZ=MIN(LZZ+O+2*NQQO-l,LZ)

2)

4)

CALL SEND (Q (*, * , J) KZZ=LZZ, MZZ, 2)
LZZ=L1+0+2*NQQO
MZZ=MIN(LZZ+O+3*NQQO-l,L2)
CALL SEND(Q(*,*,J)KZZ=LZZ,MZZ,3)
LZZ=L1+0+3*NQQO
MZZ=MIN (LZZ+O+4 *NQQO-l, L2)
CALL SEND(Q(*,*, J)KZZ=LZZ,MZZ,4)
LZZ=Ll+O+NQQO
MZZ=MIN(LZZ+o+2*NQQO-l,L2)
CALL SEND(X(*,*)KZZ=LZZ,MZZ,2)
LZZ=L1+0+2*NQQO
MZZ=MIN(LZZ+O+3*NQQO-l,L2)
CALL SEND(X(*,*)KZZ=LZZ,MZZ,3)
LZZ=L1+0+3*NQQO
MZZ=MIN (LZZ+0+4*NQQO-l,L2)
CALL SEND(X(*,*)KZZ=LZZ,MZZ,4)
LZZ=Ll+O+NQQO
MZZ=MIN (LZZ+O+2 *NQQO-l, L2)
CALL SEND(Y (*,*)KZZ=LZZ,MZZ,2)
LZZ=L1+0+2*NQQO
MZZ=MIN(LZZ+o+3*NQQO-l,L2)
CALL SEND(Y(*,*)KZZ=LZZ,MZZ,3)
LZZ=L1+0+3*NQQO
MZZ=MIN(LZZ+O+4*NQQO-l,L2)
CALL SEND (Y (*, *) KZZ=LZZ,MZZ, 4)
LZZ=Ll+O+NQQO
MZZ=MIN(LZZ+O+2*NQQO-l,L2)
CALL SEND(Z(*,*)KZZ=LZZ,MZZ,2)
LZZ=L1+0+2*NQQO
MZZ=MIN(LZZ+O+3*NQQO-l,L2)
CALL SEND(Z(*,*)KZZ=LZZ,MZZ,3)
LZZ=L1+0+3*NQQO
MZZ=MIN(LZZ+O+4*NQQO-l,L2)
CALL SEND(Z(*,*)KZZ=LZZ,MZZ,4)
DO 10 L=LQQO,MQQO
KL = (L-l)*ND+K
KP = KL+1
KR = KL-1
RJ = Q(KL, 6, J)
IF((K.NE.1) .AND. (K.NE.KMAX)) THEN . .
XK =
YK =
ZK =
ELSE
K1 =
K2 =
XK =
YK =
ZK =
ELSE
K1 =
K2 =
XK =

(X (KP, J) -X (KR, J)) *DY2
(Y (KP, J) -Y (KR, J)) *DY2
(Z (KP, J) -Z (KR, J)) *DY2
IF(K.EQ.1)THEN
KL+1
KL+2
(-3.*X(KL,J)+4.*X(Kl,J)-X(K2,J))*DY2
(-3.*Y(KL,J)+4.*Y(Kl,J)-Y(K2,J))*DY2
(-3.*Z (KL, J) +4.*Z (K1, J) -Z (K2, J)) *DY2
IF (K. EQ. KMAX) THEN
KL-1
KL-2
(3. *X (KL, J) -4. *X (Kl, J) +X (K2, J)) *DY2 .

YK = (3.*Y (KL, J) -4.*Y (K1, J) +Y (K2, J)) *DY2
ZK = (3.*Z(KL,J)-4.*Z(Kl,J)+Z(K2,J))*DY2
ENDIF
IF((J.NE.l) .AND. (J.NE.JMAX)) THEN
XJ = (X (KL, JP) -X (KL, JR)) *DX2
YJ (Y (KL, JP) -Y (KL, JR)) *DX2
ZJ = (Z (KL, JP) -Z (KL, JR)) *DX2
ELSE IF (J. EQ. 1) THEN

52 = J+2
XJ = (-3. *X (KL, J) +4. *X (KL, J1) -X (KL, J2)) *DX2
YJ = (-3. *Y (KL, J) +4. *Y (KL, J1) -Y (KL, J2)) *DX2
ZJ = (-3.*Z(KLIJ)+4.*Z(KL,J1)-Z(KL,'J2))*DX2
ELSE IF (J. EQ. JMAX) THEN
J1 = J-1
J2 = J-2
XJ = (3. *X (KL, J) -4. *X (KL, J1) +X (KL, J2)) *DX2
YJ = (3. *Y (KL, J) -4. *Y (KL, J1) +Y (KL, J2)) *DX2
ZJ = (3. *Z (KL, J) -4. *Z (KL, J1) +Z (KL, J2)) *DX2
ENDIF
ZZ (L, 1) = (YJ*ZK-ZJ*YK) *RJ
ZZ (L, 2) = (XK*ZJ-XJ*ZK) *RJ
ZZ (L, 3) = (XJ*YK-YJ*XK) *RJ
ZZ (L, 4) = -OMEGA* (Z (KL, J) *ZZ (L, 2) -Y (KL, J) *ZZ (L, 3))

10 CONTINUE c ____________________--------
CALL RECV (L
CALL RECV (KL
CALL RECV (KP
CALL RECV (KR
CALL RECV (RJ
CALL RECV (XK
CALL RECV (YK
CALL RECV (ZK
CALL RECV (K1
CALL RECV (K2
CALL RECV (XJ
CALL RECV (YJ
CALL RECV (ZJ
CALL RECV (J1
CALL RECV (J2
KQQ=L2
LZZ=Ll+O+NQQO
MZZ=MIN (LZZ+0+2*NQQO-1, L2)

LZZ=L1+0+2*NQQO
MZZ=MIN (LZZ+O +3 *NQQO - 1, L2
LZZ=L1+0+3*NQQO
MZZ=MIN (LZZ+0+4*NQQO-1, L2)
CALL RECV (ZZ (KZZ, *)KZZ=LZZ,MZZ,

CALL RECV (ZZ (KZZ, *)KZZ=LZZ,MZZ,

CALL RECV (ZZ(KZZ,*)KZZ=LZZ,MZZ,

1)
1)

END
9

9

FILE 2 {Processor 2)

CALL RECV (L2
CALL RECV (L1
NQQO=(L2- (L1) +1-0) DIV 4+1
LQQO=Ll+O+NQQO
MQQO=MIN (LQQO+O +2 *NQQo - 1, L2)
DO 10 L=LQQO,MQQO
IF (L .EQ. LQQO) THEN
CALL RECV (K
CALL RECV (ND

ENDIF
KL = (L-l)*ND+K
KP = KL+1
KR = KL-1
IF (L .EQ. LQQO) THEN
CALL RECV (J

CALL RECV(Q(*,*, J)KZZ=LQQO,MQQO,l)
ENDIF
RJ = Q (KL, 6, J)
IF (L .EQ. LQQO) THEN
CALL RECV (KMAX

ENDIF
IF((K.NE.l) .AND. (K.NE.KMAX)) THEN
IF (L .EQ. LQQO) THEN
CALL RECV (DY2

CALL RECV(X(*, *)KZZ=LQQO,MQQO,l)
ENDIF
XK = (X (KP, J) -X (KR, J)) *DY2
IF (L .EQ. LQQO) THEN

CALL RECV(Y (*, *)KZZ=LQQO,MQQO, 1)
ENDIF
YK = (Y (KP, J) -Y (KR, J)) *DY2
IF (L .EQ. LQQO) THEN

CALL RECV(Z(*,*)KZZ=LQQO,MQQO,l)
ENDIF
ZK = (Z (KP, J) -Z (KR, J)) *DY2
ELSE IF(K.EQ.1)THEN
K1 = KL+1
K2 = KL+2
XK =

c

c

c

c

c

c

(-3. *X (KL, J) +4. *X (Kl, J) -X (K2, J DY2
(-3. *Y (KL, J) +4. *Y (K1, J) -Y (K2, J)) *DY2
(-3. *Z (KL, J) +4. *Z (K1, J) -Z (KZ, J)) *DYZ

YK =
ZK =
ELSE IF (K.EQ.KMAX) THEN
K1 = KL-1
K2 = KL-2
XK = (3.*X(KL, J)-4.*X(K1, J)+X(KZ, J)) *DYZ

YK = (3. *Y (KL, J) - 4 . *Y (K1, J) +Y (K2, J)) *DY2
ZK = (3.*Z(KL,J)-4.*Z(KI,J)+Z(K2,J))*DY2
ENDIF
IF (L .EQ. LQQO) THEN
CALL RECV (JMAX 1) c
ENDIF
IF((J.NE.l) .AND. (J.NE.JMAX)) THEN
IF (L .EQ. LQQO) THEN
CALL RECV (DX2 1)
CALL RECV (JR 1)
CALL RECV (JP 1) c
ENDIF
XJ = (X (KL, JP) -X (KL, JR)) *DX2
YJ = (Y (KL, JP) -Y (KL, JR)) *DX2
ZJ = (Z (KL, JP) -Z (KL, JR)) *DX2
ELSE IF(J.EQ.l) THEN
J1 = J+1
52 = J+2
XJ = (- 3 . *X (KL, J) +4. *X (KL, J1) -X (KL, J2)) *DX2
YJ = (-3.*Y (KL, J) +4.*Y (KL, J1) -Y (KL, J2)) *DX2
ZJ = (-3.*Z(KL,J)+4.*Z(KL,Jl)-Z(KL,J2))*DX2
ELSE IF(J.EQ.JMAX) THEN
J1 = J-1
J2 = 5-2
XJ =
YJ =
ZJ =
ENDIF
ZZ (L, 1) = (YJ*ZK-ZJ*YK) *RJ
ZZ (L, 2) = (XK*ZJ-XJ*ZK) *RJ
ZZ (L, 3) = (XJ*YK-YJ*XK) *RJ
IF (L .EQ. LQQO) THEN

(3. *X (KL, J) - 4 . *X (KL, J1) +X (KL, J2)) *DX2
(3. *Y (KL, J) - 4 . *Y (KL, J1) +Y (KL, J2)) *DX2
(3. *Z (KL, J) - 4 . *Z (KL, J1) +Z (KL, J2)) *DX2

CALL RECV (OMEGA 1) c
= -OMEGA* (Z (KL, J) *ZZ (L, 2) -Y (KL, J) *ZZ (L, 3))

ENDIF
ZZ (L, 4)

10 CONTINUE
KQQ=L2
IF (L .EQ. KQQ) THEN
CALL SEND (L 1)
CALL SEND (KL 1)
CALL SEND (KP 1)
CALL SEND (KR 1)
CALL SEND (RJ 1)
CALL SEND (XK 1)
CALL SEND (YK 1)
CALL SEND (ZK 1)
CALL SEND (K1 1)
CALL SEND (K2 1)
CALL SEND (XJ 1)
CALL SEND (YJ 1)

CALL SEND (ZJ
CALL SEND (J1
CALL SEND (52
ENDIF

CALL SEND (ZZ (KZZ, *)KZZ=LQQO,MQQO, 1)
END

c

9

9

FILE 3 {Processor 3)

CALL RECV (L2
CALL RECV (L1
NQQO= (L2- (Ll) +1-0) DIV 4+1
LQQO=L1+0+2*NQQO
MQQO=MIN(LQQO+O+3*NQQO-l,L2)
DO 10 L=LQQO,MQQO
IF (L .EQ. LQQO) THEN
CALL RECV (K
CALL RECV (ND

ENDIF
KL = (L-l)*ND+K
KP = KL+1
KR = KL-1

c

IF (L .EQ. LQQO) THEN
CALL RECV (J c
CALL RECV(Q(*, *, J)KZZ=LQQO,MQQO, 1)
ENDIF
RJ = Q (KL, 6, J)
IF (L .EQ. LQQO) THEN
CALL RECV (KMAX

ENDIF
IF((K.NE.l) .AND. (K.NE.KMAX)) THEN
IF (L .EQ. LQQO) THEN
CALL RECV (DY2

CALL RECV(X(*,*)KZZ=LQQO,MQQO,l)
ENDIF
XK * (X (KP, J) -X (KR, J)) *DY2
IF (L .EQ. LQQO) THEN

CAbL RECV (Y (*, *) KZZ=LQQO, MQQO, 1)
ENDIF
YK = (Y (KP, J) -Y (KR, J)) *DY2
IF (L .EQ. LQQO) THEN

CALL RECV(Z (* , *)KZZ=LQQO,MQQO, 1)
ENDIF

c

c

c ------rc--------------------

c

ZK = (Z (KP, J) -Z (KR, J)) *DY2
ELSE IF (K.EQ. 1) THEN
K1 = KL+1
K2 = KL+2
XK = (-3.*X(KL,J)+4.*X(Kl,J)-X(K2,J))*DY2
YK = (-3.*Y(KL,J)+4.*Y(Kl,J)-Y(K2,J))*DY2
ZK = (- 3 . *Z (KL, J) +4. *Z (Kl, J) -Z (K2, J)) *DY2
ELSE IF (K.EQ.KMAX) THEN
K1 = KL-1
K2 = KL-2
XK = (3.*X(KLtJ)-4.*X(K1,J)+X(K2,J))*DY2

YK =
ZK =
ENDIF
IF (L .EQ. LQQO) THEN
CALL RECV (JMAX 1)

(3. *Y (KL, J) -4. *Y (K1, J) +Y (K2, J)) *DY2
(3.*Z(KL, J) -4.*Z (Kl, J) +Z (K2, J)) *DY2

c
ENDIF
IF((J.NE.l).AND.(J.NE.JMAX)) THEN .
IF (L .EQ. LQQO) THEN
CALL RECV (DX2 1) *

CALL RECV (JR 1)
CALL RECV (JP 1)

ENDIF
XJ = (X (KL, JP) -X (KL, JR)) *DX2
YJ = (Y (KL, JP) -Y (KL, JR)) *DX2
ZJ = (Z (KL, JP) - Z (KL, JR)) *DX2
ELSE IF(J.EQ.l) THEN
J1 = J+l
52 = J+2
XJ =
YJ =
ZJ =
ELSE IF (J. EQ. JMAX) THEN
J1 = J-1
52 = J-2
XJ = (3 . *X (KL, J) -4. *X (KL, J1) +X (KL, J2)) *DX2
Y J = (3 . *Y (KL, J) -4. *Y (KL, J1) +Y (KL, J2)) *DX2
ZJ = (3 . * Z (K L l J) - 4 . * Z (K L , J 1) + Z (K L , J 2)) * D X 2
ENDIF
ZZ (L, 1) = (YJ*ZK-ZJ*YK) *RJ
ZZ (L,2) = (XK*ZJ-XJ*ZK) *RJ
Z Z (L, 3) = (XJ*YK-YJ*XK) *RJ
IF (L .EQ. LQQO) THEN

c

(-3. *X (KL, J) +4. *X (KL, J1) -X (KL, J2)) *DX2
(-3. *Y (KL, J) +4. *Y (KL, J1) -Y (KL, J2)) *DX2
(-3. *Z (KL, J) +4. *Z (KL, J1) - Z (KL, J2)) *DX2

CALL RECV (OMEGA 1) c
=

ENDIF

10 CONTINUE
KQQ=L2
IF (L .EQ. KQQ) THEN

ZZ (L, 4) -OMEGA* (Z (KL, J) * Z Z (L, 2) -Y (KL, J) * Z Z (L, 3))

CALL SEND (L 1)
CALL SEND (KL 1)
CALL SEND (KP 1)
CALL SEND (KR 1)
CALL SEND (RJ 1)
CALL SEND (XK 1)
CALL SEND (YK 1)
CALL SEND (ZK 1)
CALL SEND (K1 1)
CALL SEND (K2 1)
CALL SEND (XJ 1)
CALL SEND (YJ 1)

CALL SEND (ZJ
CALL SEND (J1
CALL SEND (52
ENDIF

CALL SEND (ZZ (KZZ, *) KZZ=LQQO,MQQO, 1)
END

c

9

9

FILE 4 {Processor 4)

CALL RECV (L2
CALL RECV (L1
NQQO=(L2- (L1) +1-0) DIV 4+1
LQQO=L1+0+3*NQQO
MQQO=L2
DO 10 L=LQQO,MQQO
IF (L .EQ. LQQO) THEN
CALL RECV (K
CALL RECV (ND

ENDIF
KL = (L-l)*ND+K
KP = KL+1
KR = KL-1
IF (L .EQ. LQQO) THEN
CALL RECV (J

CALL RECV(Q(*,*, J)KZZ=LQQO,MQQO,l)
ENDIF
RJ = Q (KL, 6, J)
IF (L .EQ. LQQO) THEN
CALL RECV (KMAX

ENDIF
IF ((K.NE. 1) .AND. (K.NE .KMAX)) THEN .
IF (L .EQ. LQQO) THEN
CALL RECV (DY2

CALL RECV(X(*,*)KZZ=LQQO,MQQO,l) .

ENDIF
XK = (X (KP, J) -X (KR, J)) *DY2
IF (L .EQ. LQQO) THEN

CALL RECV(Y (*, *)KZZ=LQQO,MQQO, 1)
ENDIF
YK = (Y (KP, J) -Y (KR, J)) *DY2
IF (L .EQ. LQQO) THEN

CALL RECV (Z (*, *) KZZ=LQQO, MQQO, 1)
ENDIF

c

c

c

c

c

c

ZK =
ELSE
K1 =
K2 =
XK =
YK =
ZK =
ELSE
K1 =
K2 =
XK =

(Z (KP, J) -Z (KR, J)) *DY2
IF(K.EQ.1)THEN
KL+ 1
KL+2
(-3. *X (KL, J) +4. *X (K1, J) -X (K2, J)) *DY2
(-3. *Y (KL, J) +4. *Y (Kl, J) -Y (K2, J)) *DY2
(-3. *Z (KL, J) +4. *Z (Kl, J) -Z (K2, J)) *DY2
IF (K. EQ. KMAX) THEN
KL- 1
KL-2
(3. *X (KL, J) -4. *X (Kl, J) +X (K2, J)) *DY2

YK = (3.*Y(KL,J)-4.*Y(Kl,J)+Y(Kz,J))*DY2
ZK = (3.*Z(KL,J)-4.*Z(KI,J)+Z(K2,J))*DYZ
ENDIF
IF (L .EQ. LQQO) THEN
CALL RECV (JMAX 1) c
ENDIF
IF((J.NE.l) .AND. (J.NE.JMAX)) THEN
IF (L .EQ. LQQO) THEN
CALL RECV (DX2 1)
CALL RECV (JR 1)
CALL RECV (JP 1)

ENDIF
XJ = (X (KL, JP) -X (KL, JR)) *DX2
YJ = (Y (KL, JP) -Y (KL, JR)) *DX2
ZJ = (Z (KL, JP) -Z (KL, JR)) *DX2
ELSE IF(J.EQ.l) THEN
J1 = J+l
J2 = J+2
XJ =
YJ =
ZJ =
ELSE IF (J. EQ. JMAX) THEN
J1 = J-1
J2 = 5-2
XJ = (3. *X (KL, J) -4. *X (KL, J1) +X (KL, J2)) *DX2
YJ = (3. *Y (KL, J) -4. *Y (KL, J1) +Y (KL, 52)) *DX2
ZJ = (3.*Z(KL,J)-4.*Z(KL,Jl)+Z(KL,J2))*DX2
ENDIF
ZZ (L, 1) = (YJ*ZK-ZJ*YK) *RJ
ZZ (L, 2) = (XK*ZJ-XJ*ZK) *RJ
ZZ (L, 3) = (XJ*YK-YJ*XK) *RJ
IF (L .EQ. LQQO) THEN

c

(- 3 . *X (KL, J) +4. *X (KL, J1) -X (KL, J2)) *DX2
(-3.*Y (KL, J) +4.*Y (KL, J1) -Y (KL, 52)) *DX2
(-3. *Z (KL, J) +4. *Z (KL, J1) -Z (KL, J2)) *DX2

CALL RECV (OMEGA 1) ’ c
= -OMEGA* (Z (KL, J) *ZZ (L, 2) -Y (KL, J) *ZZ (L, 3))

ENDIF
ZZ (L, 4)

10 CONTINUE
KQQ=L2
IF (L .EQ. KQQ)
CALL SEND (L
CALL SEND (KL
CALL SEND (KP
CALL SEND (KR
CALL SEND (RJ
CALL SEND (XK
CALL SEND (YK
CALL SEND (ZK
CALL SEND (K1
CALL SEND (K2
CALL SEND (XJ
CALL SEND (YJ

THEN

CALL SEND (ZJ
CALL SEND (J1
CALL SEND (52
ENDIF

CALL SEND (ZZ (KZZ, *) KZZ=LQQO,MQQO, 1)
END

c

\

9

9

